A number of unique proteases localize to specific sub-compartments of the mitochondria, but the functions of these enzymes are poorly defined. Here, in vivo proximity-dependent biotinylation (BioID) is used to map the interactomes of seven proteases localized to the mitochondrial intermembrane space (IMS). In total, 802 high confidence proximity interactions with 342 unique proteins are identified. While all seven proteases co-localized with the IMS markers OPA1 and CLPB, 230 of the interacting partners are unique to just one or two protease bait proteins, highlighting the ability of BioID to differentiate unique interactomes within the confined space of the IMS. Notably, high-temperature requirement peptidase 2 (HTRA2) interacts with eight of 13 components of the mitochondrial intermembrane space bridging (MIB) complex, a multiprotein assembly essential for the maintenance of mitochondrial cristae structure. Knockdown of HTRA2 disrupts cristae in HEK 293 and OCI-AML2 cells, and leads to increased intracellular levels of the MIB subunit IMMT. Using a cell-free assay it is demonstrated that HTRA2 can degrade recombinant IMMT but not two other core MIB complex subunits, SAMM50 and CHCHD3. The IMS protease interactome thus represents a rich dataset that can be mined to uncover novel IMS protease biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201900139 | DOI Listing |
Genes (Basel)
November 2024
School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
The human mitochondrial proteome comprises approximately 1500 proteins, with only 13 being encoded by mitochondrial DNA. The remainder are encoded by the nuclear genome, translated by cytosolic ribosomes, and subsequently imported into and sorted within mitochondria. The process of mitochondria-destined protein import is mediated by several intricate protein complexes distributed among the four mitochondrial compartments.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4 EAST, 8010 Graz, Austria; BioTechMed, Graz, Austria. Electronic address:
The uptake of Ca by mitochondria is an important and tightly controlled process in various tissues. Even small changes in the key proteins involved in this process can lead to significant cellular dysfunction and, ultimately, cell death. In this study, we used stimulated emission depletion (STED) microscopy and developed an unbiased approach to monitor the sub-mitochondrial distribution and dynamics of the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake 1 (MICU1) under resting and stimulated conditions.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24060, United States. Electronic address:
Chemical mitochondrial uncouplers are protonophoric, lipophilic small molecules that transport protons from the mitochondrial intermembrane space into the matrix independent of ATP synthase, thus uncoupling nutrient oxidation from ATP production. Our previous work identified BAM15 (IC 0.27 μM) as a potent and efficacious mitochondrial uncoupler with potential for obesity treatment.
View Article and Find Full Text PDFCirculation
December 2024
Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, China. (L.Z., X.C., X.H., Y.T., J.M., Xinyu Li, H.W., M.C., Y.Z., M.D., Q.Y., D.H., H.J., Xuesong Li, H.C.).
Background: Mitochondrial dysfunction is a key factor in the development of atherogenesis. METTL4 (methyltransferase-like protein 4) mediates N6- methyldeoxyadenosine (6mA) of mammalian mitochondrial DNA (mtDNA). However, the role of METTL4-mediated mitoepigenetic regulation in atherosclerosis is still unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!