The synthesis of trifluoromethylated cyclopropenes is often associated with important applications in drug discovery and functional materials. In this report, we describe the use of readily available chiral rhodium(II) catalysts for a highly efficient asymmetric cyclopropenation reaction of fluorinated donor-acceptor diazoalkanes with a broad variety of aliphatic and aromatic alkynes. Further studies highlight the unique reactivity of fluorinated donor-acceptor diazoalkanes in the synthesis of oligo-cyclopropenes. Subsequent C-H functionalization of trifluoromethyl cyclopropenes furnishes densely substituted cyclopropene frameworks and also allows the alternative synthesis of bis-cyclopropenes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028152PMC
http://dx.doi.org/10.1002/chem.201904680DOI Listing

Publication Analysis

Top Keywords

trifluoromethyl cyclopropenes
8
fluorinated donor-acceptor
8
donor-acceptor diazoalkanes
8
catalytic synthesis
4
synthesis trifluoromethyl
4
cyclopropenes oligo-cyclopropenes
4
oligo-cyclopropenes synthesis
4
synthesis trifluoromethylated
4
trifluoromethylated cyclopropenes
4
cyclopropenes associated
4

Similar Publications

Although 2-furyl-carbenes (furfurylidenes) are prone to instantaneous electrocyclic ring opening, chiral [BiRh]-paddlewheel complexes empowered by London dispersion allow (trifluoromethyl)furfurylidene metal complexes to be generated from a bench-stable triftosylhydrazone precursor. These reactive intermediates engage in asymmetric [2+1] cycloadditions and hence open entry into valuable trifluoromethylated cyclopropane or -cyclopropene derivatives in optically active form, which are important building blocks for medicinal chemistry but difficult to make otherwise.

View Article and Find Full Text PDF

Synthesis of Cyclopropenols Enabled by Visible-Light-Induced Organocatalyzed [2+1] Cyclization.

Angew Chem Int Ed Engl

March 2022

Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, 299 Bayi Road, Wuhan, Hubei, 430072, China.

Although the synthesis of common cyclopropenes has been well studied, the access to cyclopropenols is rather limited. Herein, we report the first synthesis of α-trifluoromethylated cyclopropenols via 2+1 cycloaddition reactions between alkynes and trifluoroacylsilanes, enabled by visible-light-induced organocatalysis. The novel ambiphilic donor-acceptor carbenes derived from trifluoroacetylsilanes reacted efficiently with both activated and non-activated alkynes.

View Article and Find Full Text PDF

An efficient synthesis of 3-trifluoromethyl-3-aryl-cyclopropenes via the cyclopropenation reaction of alkynes with photolytically generated carbenes from diazirine compounds is described. This reaction is performed in continuous flow using readily available LEDs under mild reaction conditions. This new and efficient method describes the synthesis of 25 examples of 3-trifluoromethyl-3-aryl-cyclopropenes with yields 97%, achieved in continuous flow with a 5 min residence time.

View Article and Find Full Text PDF

This Minireview describes recent advances toward the synthesis of fluoro-, monofluoromethyl-, difluoromethyl-, and trifluoromethyl-substituted three-membered rings such as cyclopropanes, aziridines, epoxides, episulfides, cyclopropenes, and 2 H-azirines. The main synthetic methodologies since 2016 for cyclopropanes and since 2010 for the other three-membered rings are reported.

View Article and Find Full Text PDF

The synthesis of trifluoromethylated cyclopropenes is often associated with important applications in drug discovery and functional materials. In this report, we describe the use of readily available chiral rhodium(II) catalysts for a highly efficient asymmetric cyclopropenation reaction of fluorinated donor-acceptor diazoalkanes with a broad variety of aliphatic and aromatic alkynes. Further studies highlight the unique reactivity of fluorinated donor-acceptor diazoalkanes in the synthesis of oligo-cyclopropenes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!