This study expresses our results on surface-enhanced Raman spectroscopy (SERS) analyses of neonicotinoid insecticide thiacloprid, i.e., Calypso 480 SC, in quantities much smaller than usually applied in the agricultural medicine. Advanced Ag and Au nanostructures created by the thermal deposition technique on AlO ceramic were applied as active substrates for SERS analyses. The minimum concentration of thiacloprid detected was 380 µM and the enhancement factor was estimated to be about 3 × 10. The intensity of the SERS peaks increased by an order of magnitude after pulsed laser annealing of the films and formation of nanoparticle arrays and the enhancement factor reached ≈10, respectively. The proposed study has direct bearing on the environment and human health by detection of small amounts or residue of harmful pollutants using a relatively cheap and easy method to produce active SERS substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0003702819878267DOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
raman spectroscopy
8
spectroscopy sers
8
neonicotinoid insecticide
8
insecticide thiacloprid
8
sers analyses
8
enhancement factor
8
sers
5
sers neonicotinoid
4
thiacloprid assisted
4

Similar Publications

An anisotropic plasmonic trimer is proposed as an effective spectroscopic amplifier for the maximum signal enhancement of the Hyper-Raman Scattering (HRS) process. The three-particle system is composed of asymmetric Au nanorings arranged collinearly in a J-aggregate configuration and illuminated by a longitudinally polarized light. The optical properties of the considered trimer have been numerically simulated by the Finite-Difference Time-Domain (FDTD) method.

View Article and Find Full Text PDF

Silver nanowire/gold nanosphere binary plasma-assembled membranes for sensitive SERS detection of homocysteine.

Mikrochim Acta

December 2024

School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.

Silver nanowire (Ag NW)/gold nanosphere (Au NS) binary plasma films were prepared using plasma coupling between Ag NWs and Au NSs. The plasma films formed by combining these two noble metals showed better sensitivity for SERS detection with a minimum detection concentration of 10 M for R6G compared to pure Ag NWs or Au NSs. After rational optimisation of the substrate preparation process, the substrate showed good homogeneity, reproducibility and stability.

View Article and Find Full Text PDF

pH-Adjusted Liquid SERS Approach: Toward a Reliable Plasma-Based Early Stage Lung Cancer Detection.

Anal Chem

December 2024

College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350117, China.

Surface-enhanced Raman spectroscopy (SERS) provides a rapid and nondestructive method for biological plasma analysis, offering unparalleled sensitivity and specificity. However, most current studies predominantly employ the drop-cast method, where liquid samples are dried on the SERS substrate for spectral recording. While effective, this method is both time-consuming and inconsistent.

View Article and Find Full Text PDF
Article Synopsis
  • Excessive plastic use can harm human health, specifically by affecting the respiratory and circulatory systems, making plastic detection crucial for food safety and environmental protection.
  • Researchers developed a roseate petal homochiral nanogold (Au RHNs) substrate for detecting plastics in water using surface-enhanced Raman scattering (SERS), achieving a high mean enhancement factor of 8.4696.
  • This substrate effectively detected polyethylene (PE) and polyvinyl chloride (PVC) in various water samples, showing strong potential for real-world applications in monitoring plastic pollution.
View Article and Find Full Text PDF

Rapid on-site diagnosis of PEDV and PoRV co-infection by gold magnetic nanoparticles-based SERS immunochromatography.

Talanta

December 2024

College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China. Electronic address:

Porcine epidemic diarrhea virus (PEDV) and porcine rotavirus (PoRV) are the two main pathogens causing porcine diarrhea, which are characterized by high morbidity and mortality. Most of the diagnostic methods available are limited to the laboratory or fail to highlight their advantages in terms of target species, detection time, sensitivity, and stability. To meet the demand for rapid on-site diagnosis of PEDV and PoRV co-infection, a surface-enhanced Raman scattering (SERS) immunochromatographic sensor based on gold magnetic nanoparticles (MNPs) was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!