Facile Synthesis of 3d Transition-Metal-Doped α-Co(OH) Nanomaterials in Water-Methanol Mediated with Ammonia for Oxygen Evolution Reaction.

ACS Omega

Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai 200241, P. R. China.

Published: October 2019

Layered cobalt hydroxides are cost-efficient electrocatalysts for oxygen evolution reaction (OER) in the field of energy conversion. Herein, we developed a facile synthesis method of 3d transition-metal-doped α-Co(OH) nanomaterials mediated with ammonia in water-methanol at room temperature. The doping of Cu and Ni leads to flower-like nanostructures similar to pure α-Co(OH), whereas the doping of Fe produces nanoparticles with more than 2 times larger surface area in comparison with the Cu- and Ni-doped nanoflowers. The obtained dispersion with the addition of Nafion can be used directly as an electrocatalyst for OER with excellent catalytic activity, especially that the overpotential of Fe doped is as low as 290 mV at 10 mA cm and the turnover frequency is improved by 3 times as compared with that of α-Co(OH). Furthermore, the catalyst can be loaded onto foam nickel, which presents excellent durability with the current density unchanged under continuous chronoamperometry reaction for as long as 12 h and almost quantitative faradaic efficiency. The superior electrocatalytic properties combined with the simple synthesis without the tedious purification procedure is very promising for OER.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788063PMC
http://dx.doi.org/10.1021/acsomega.9b02504DOI Listing

Publication Analysis

Top Keywords

facile synthesis
8
transition-metal-doped α-cooh
8
α-cooh nanomaterials
8
mediated ammonia
8
oxygen evolution
8
evolution reaction
8
synthesis transition-metal-doped
4
α-cooh
4
nanomaterials water-methanol
4
water-methanol mediated
4

Similar Publications

Ammonia Decomposition Catalyzed by Co Nanoparticles Encapsulated in Rare Earth Oxide.

J Phys Chem Lett

January 2025

Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.

View Article and Find Full Text PDF

The urea oxidation reaction (UOR) is characterized by a lower overpotential compared to the oxygen evolution reaction (OER) during electrolysis, which facilitates the hydrogen evolution reaction (HER) at the cathode. Charge distribution, which can be modulated by the introduction of a heterostructure, plays a key role in enhancing the adsorption and cleavage of chemical groups within urea molecules. Herein, a facile all-room temperature synthesis of functional heterojunction NiCoS/CoMoS grown on carbon cloth (CC) is presented, and the as-prepared electrode served as a catalyst for simultaneous hydrogen evolution and urea oxidation reaction.

View Article and Find Full Text PDF

Three-step click assembly using trivalent platforms bearing azido, ethynyl, and fluorosulfonyl groups.

Chem Commun (Camb)

January 2025

Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585, Japan.

Divergent synthesis of triazoles was achieved using newly designed platform molecules possessing azide, alkyne, and fluorosulfonyl moieties. Consecutive conjugations by the sulfur(VI) fluoride exchange and following consecutive triazole formations allowed us to prepare a wide variety of bis(triazole)s by virtue of selective transformations. One-pot triple-click assembly of easily accessible modules led to the facile synthesis of middle-molecular-weight triazoles with various functional moieties.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the rising importance of assessing the cytotoxicity of gold nanoparticles (GNPs) in biomedical applications.
  • Researchers synthesized three types of GNPs—gold nanorods (GNRs), gold nanobipyramids (GNBPs), and gold nanocups (GNCs)—using a specific method and measured their sizes.
  • The experiments showed that the cytotoxic effects of GNPs varied based on their shape and surface coating, with CTAB-coated GNPs being more harmful than PEG-coated ones, indicating that these factors significantly influence GNP behavior in cells.
View Article and Find Full Text PDF

Facile Ester-based Phase Change Materials Synthesis for Enhanced Energy Storage Toward Battery Thermal Management.

Adv Sci (Weinh)

January 2025

School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, NO. 1 DAXUE ROAD, Xuzhou, Jiangsu, 221116, China.

With the increasing demand for thermal management, phase change materials (PCMs) have garnered widespread attention due to their unique advantages in energy storage and temperature regulation. However, traditional PCMs present challenges in modification, with commonly used physical methods facing stability and compatibility issues. This study introduces a simple and effective chemical method by synthesizing seven ester-based PCMs through chemical reactions involving lauric acid (LA) and seven different alcohols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!