Incomplete lineage sorting and introgression are 2 major and nonexclusive causes of species-level non-monophyly. Distinguishing between these 2 processes is notoriously difficult because they can generate similar genetic signatures. Previous studies have suggested that 2 closely related duck species, the Chinese spot-billed duck and the mallard were polyphyletically intermixed. Here, we utilized a wide geographical sampling, multilocus data and a coalescent-based model to revisit this system. Our study confirms the finding that Chinese spot-billed ducks and Mallards are not monophyletic. There was no apparent interspecific differentiation across loci except those at the mitochondrial DNA (mtDNA) control region and the Z chromosome (CHD1Z). Based on an isolation-with-migration model and the geographical distribution of lineages, we suggest that both introgression and incomplete lineage sorting might contribute to the observed non-monophyly of the 2 closely related duck species. The mtDNA introgression was asymmetric, with high gene flow from Chinese spot-billed ducks to Mallards and negligible gene flow in the opposite direction. Given that the 2 duck species are phenotypically distinctive but weakly genetically differentiated, future work based on genome-scale data is necessary to uncover genomic regions that are involved in divergence, and this work may provide further insights into the evolutionary histories of the 2 species and other waterfowls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6784501 | PMC |
http://dx.doi.org/10.1093/cz/zoy074 | DOI Listing |
Sci Rep
October 2024
Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore, Karnataka, 574199, India.
Genomics Proteomics Bioinformatics
June 2023
Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China. Electronic address:
The Chinese crested (CC) duck is a unique indigenous waterfowl breed, which has a crest cushion that affects its survival rate. Therefore, the CC duck is an ideal model to investigate the genetic compensation response to maintain genetic stability. In the present study, we first generated a chromosome-level genome of CC ducks.
View Article and Find Full Text PDFVirus Genes
August 2023
National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, No. 1-5 Beichenxilu, Chaoyang District, Beijing, 100101, People's Republic of China.
H11N9 viruses in wild birds might have provided the NA gene of human H7N9 virus in early 2013 in China, which evolved with highly pathogenic strains in 2017 and caused severe fatalities. To investigate the prevalence and evolution of the H11N9 influenza viruses, 16,781 samples were collected and analyzed during 2016-2020. As a result, a novel strain of influenza A (H11N9) virus with several characteristics that increase virulence was isolated.
View Article and Find Full Text PDFAnimals (Basel)
March 2023
Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China.
Front Vet Sci
January 2022
Department of Veterinary Infectious Diseases and Avian Diseases, Center for Poultry Diseases Control, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea.
Avian reoviruses (ARVs) cause severe arthritis, tenosynovitis, pericarditis, and depressed growth in chickens, and these conditions have become increasingly frequent in recent years. Studies on the role of wild birds in the epidemiology of ARVs are insufficient. This study provides information about currently circulating ARVs in wild birds by gene detection using diagnostic RT-PCR, virus isolation, and genomic characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!