Humans walk, run, and change their speed in accordance with circumstances. These gaits are rhythmic motions generated by multi-articulated movements, which have specific spatiotemporal patterns. The kinematic characteristics depend on the gait and speed. In this study, we focused on the kinematic coordination of locomotor behavior to clarify the underlying mechanism for the effect of speed on the spatiotemporal kinematic patterns for each gait. In particular, we used seven elevation angles for the whole-body motion and separated the measured data into different phases depending on the foot-contact condition, that is, single-stance phase, double-stance phase, and flight phase, which have different physical constraints during locomotion. We extracted the spatiotemporal kinematic coordination patterns with singular value decomposition and investigated the effect of speed on the coordination patterns. Our results showed that most of the whole-body motion could be explained by only two sets of temporal and spatial coordination patterns in each phase. Furthermore, the temporal coordination patterns were invariant for different speeds, while the spatial coordination patterns varied. These findings will improve our understanding of human adaptation mechanisms to tune locomotor behavior for changing speed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764191 | PMC |
http://dx.doi.org/10.3389/fncom.2019.00063 | DOI Listing |
Polymers (Basel)
December 2024
Department of Environmental Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul 34320, Turkey.
In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
The Xyloglucan endotransglucosylase/hydrolase (XTH) family, a group of cell wall-modifying enzymes, plays crucial roles in plant growth, development, and stress adaptation. The quality and yield of Chinese jujube () fruit are significantly impacted by environmental stresses, including excessive salinity, drought, freezing, and disease. However, there has been no report of the XTH encoding genes present in the Chinese jujube genome and their response transcription level under various stresses.
View Article and Find Full Text PDFMolecules
December 2024
Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
Endohedral metallo-borospherenes M@B have received considerable attention since the discovery of B in 2014. However, the coordination bonding nature of most of actinide-doped endohedral An@B still remains in dispute or unexplored. Extensive and systematic first-principles theory calculations performed herein unveil the ground states of triplet U@B (, , A), quartet U@B (, , B), quintet Np@B (, , A), sextet Np@B (, , A), septet Pu@B (, , A), octet Am@B (, , A), and octet Cm@B (, , A) at the coupled-cluster with triple excitations CCSD(T) level.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
In this paper, in order to investigate the harmonious relationship between the compression deformation behavior of metastable β titanium alloy and the microstructure evolution, the β solution-treated Ti-10V-2Fe-3Al (Ti-1023) alloy was compressed at room temperature and its deformation behavior was analyzed. Optical microscopy (OM) and field emission electron microscopy (FESEM) were used to study the microstructure evolution of alloys at different strain rates. The results show that the stress-induced martensite transformation (SIMT) is more easily activated by low strain rate compression deformation, which is conducive to improving its comprehensive mechanical properties.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Unité Propre de Recherche Innovante, ERIT Plant Science, Interactions and Innovation, Avignon Université, 301 Rue Baruch de Spinoza, 84140 Avignon, France.
Ultraviolet C (UV-C) flash treatment represents a promising method for priming plants. This study compared the effects of 1 s (flash) and 60 s (60 s) UV-C exposures on the transcriptome of L. plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!