Accumulating data indicates that brain inflammation plays an important role in the pathophysiology of chronic exercise-induced fatigue. Moxibustion in traditional Chinese medicine has been found to alleviate exercise-induced fatigue. However, it remains unclear whether the effect of moxibustion is related to its anti-inflammatory properties. In this study, rats were exposed to 3-week exhaustive swimming to induce chronic exercise-induced fatigue. The body weight, exhaustive swimming time, tail suspension test and open-field test were observed. Real-time polymerase chain reaction (RT-PCR) was used to determine the mRNA expression of proinflammatory cytokines (interleukin-1β [IL-1β], interleukin-6 [IL-6], and tumor necrosis factor-α[TNF-α]), and enzyme-linked immunosorbent assay (ELISA) was used to detect IL-1β, IL-6, and TNF-α concentrations. Chronic exhaustive exercise significantly reduced the body weight and exhaustive swimming time, and increased tail suspension immobility time, which were reversed by moxibustion treatment. Compared with control rats, the mRNA and protein expression of IL-1β, IL-6, and TNF-α in the hippocampus was significantly increased in exhaustive swimming trained rats. Moxibustion significantly decreased the level of IL-6 in the hippocampus, but not affected IL-1β and TNF-α level significantly. Our results suggested that a potential inflammatory damage in the brain may be involved during chronic exhaustive exercise-induced fatigue. Moxibustion could attenuate the inflammatory impairment in exercise-induced fatigue, which might be mediated by inhibition of the proinflammatory cytokine IL-6 levels in the brain region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763602PMC
http://dx.doi.org/10.3389/fnint.2019.00048DOI Listing

Publication Analysis

Top Keywords

exercise-induced fatigue
24
exhaustive swimming
16
chronic exercise-induced
12
fatigue moxibustion
8
body weight
8
weight exhaustive
8
swimming time
8
tail suspension
8
il-1β il-6
8
il-6 tnf-α
8

Similar Publications

Very-low-carbohydrate diets (LCHF; <50g/day) have been debated for their potential to lower pre-exercise muscle and liver glycogen stores and metabolic efficiency, risking premature fatigue. It is also hypothesized that carbohydrate ingestion during prolonged exercise delays fatigue by increasing carbohydrate oxidation, thereby sparing muscle glycogen. Leveraging a randomized crossover design, we evaluated performance during strenuous time-to-exhaustion (70%⩒O) tests in trained triathletes following 6-week high-carbohydrate (HCLF, 380g/day) or very-low-carbohydrate (LCHF, 40g/day) diets to determine (i) if adoption of the LCHF diet impairs time-to-exhaustion performance, (ii) whether carbohydrate ingestion (10g/hour) 6-12x lower than current CHO fuelling recommendations during low glycogen availability (>15-hour pre-exercise overnight fast and/or LCHF diet) improves time-to-exhaustion by preventing exercise-induced hypoglycemia (EIH; <3.

View Article and Find Full Text PDF

Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model.

Cogn Neurodyn

December 2025

Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China.

Fatigue, a complex and multifaceted symptom, profoundly influences quality of life, particularly among individuals suffering from chronic medical conditions or neurological disorders. This symptom not only exacerbates existing conditions but also hinders daily functioning, thereby perpetuating a vicious cycle of worsening symptoms and reduced physical activity. Given the pivotal role of the motor cortex (M1) in coordinating and executing voluntary movements, understanding how the cortex regulates fatigue is crucial.

View Article and Find Full Text PDF

Background: Glucose transporter 1 deficiency syndrome (Glut1DS) was initially reported by De Vivo and colleagues in 1991. This disease arises from mutations in the SLC2A1 and presents with a broad clinical spectrum. It is a treatable neuro-metabolic condition, where prompt diagnosis and initiation of ketogenic dietary therapy can markedly enhance the prognosis.

View Article and Find Full Text PDF

Circulating Endocannabinoids Are Associated with Mental Alertness During Ultra-Endurance Exercise.

Cannabis Cannabinoid Res

December 2024

Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.

Ultra-endurance exercise events result in central fatigue, impacting on mental alertness and decision making. Endocannabinoids are typically elevated during endurance exercise and have been implicated in central processes such as learning and memory, but their role in central fatigue has never been studied. Twenty-four recreational male ultrarunners participated in a 100-km trail run, and 18 of them completed at least 60 km and were included in the analyses.

View Article and Find Full Text PDF

Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!