Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme constituted by two subunits, α1 and β1. Previously we have shown that 17β-estradiol (E2) exerts opposite effects on these subunits by increasing α1 and decreasing both β1 expression and enzymatic activity. To date, the physiological relevance of E2-induced sGC subunits' imbalance has not been addressed. Also, increased levels strongly correlate with E2-induced proliferation in E2-dependent tissues. The aim of the present study was to investigate the role of sGCα1 in proliferation, survival, and migration in two E2-responsive and non-responsive tumour cell lines. Here we showed that E2 stimulated sGCα1 expression in ECC-1 endometrial cancer cells. sGCα1 knock-down significantly reduced E2-dependent cell proliferation. Moreover, sGCα1 silencing caused G1 arrest together with an increase in cell death and dramatically inhibited cell migration. Surprisingly, disruption of sGCα1 expression caused a similar effect even in absence of E2. Confirming this effect, sGCα1 knock-down also augmented cell death and decreased proliferation and migration in E2-unresponsive HeLa cervical cancer cells. Our results show that sGCα1 mediated cell proliferation, survival, and migration in ECC-1 and HeLa cells and suggest that sGCα1 can not only mediate E2-tumour promoting effects but can also be involved in hormone-independent tumour progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794259 | PMC |
http://dx.doi.org/10.1038/s41598-019-51420-5 | DOI Listing |
Cell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
Clear cell renal cell carcinoma is a prevalent urological malignancy, imposing substantial burdens on both patients and society. In our study, we used bioinformatics methods to select four putative target genes associated with EMT and prognosis and developed a nomogram model which could accurately predicting 5-year patient survival rates. We further analyzed proteome and single-cell data and selected PLCG2 and TMEM38A for the following experiments.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China.
To investigate the clinicopathological features, diagnosis, genetic alterations, and biological behaviors of hamartomatous inverted hyperplastic polyp (HIHP) in the gastrointestinal tract. The clinical, sonographic, endoscopic and pathologic data of 10 HIHP cases diagnosed at the First Affiliated Hospital of Air Force Medical University, Xi'an, China from January 2013 to March 2024 were collected. Their clinicopathological features and histological morphology were analyzed.
View Article and Find Full Text PDFMatrix Biol
January 2025
Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC. Electronic address:
Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.
View Article and Find Full Text PDFCryobiology
January 2025
Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India-560030.
The application of spermatogonial stem cells (SSC) will be more effective and feasible following the successful cryopreservation and transfer of SSCs in livestock. Like other cells, SSCs are also sensitive to cryoinjury; hence composition of the cryomedia and freezing protocols need to be optimized. The present study aims to optimising the best freezing rates by minimising the ice crystallization and dehydration effect in order to maximize the post-thaw SSCs survivability and stemness characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!