How does transcranial alternating current stimulation entrain single-neuron activity in the primate brain?

Proc Natl Acad Sci U S A

ExpORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium;

Published: November 2019

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842641PMC
http://dx.doi.org/10.1073/pnas.1912927116DOI Listing

Publication Analysis

Top Keywords

transcranial alternating
4
alternating current
4
current stimulation
4
stimulation entrain
4
entrain single-neuron
4
single-neuron activity
4
activity primate
4
primate brain?
4
transcranial
1
current
1

Similar Publications

Background: Autism spectrum disorder (ASD) is a heterogeneous neurobiological condition characterized by behavioral problems and delayed neurodevelopment. Although transcranial magnetic stimulation (TMS) has been proposed as an alternative treatment for patients with ASD because of its promising benefits in reducing repetitive behaviors and enhancing executive functions, the use of high-intensity pulses (Hi-TMS) appears to be related to the side effects of the therapy. Low-intensity TMS (Li-TMS) has been partially investigated, but it may have clinical effects on ASD and simultaneously increase treatment safety.

View Article and Find Full Text PDF

Introduction: Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations. This study investigated whether 5 Hz tACS could modulate neural oscillations in the prefrontal cortex and how this modulation impacts performance in working memory (WM) tasks.

Method: In two sessions, 28 healthy participants received 5 Hz tACS or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC) while performing tasks with high and low WM loads.

View Article and Find Full Text PDF

Despite the massive efforts of modern medicine to stop the evolution of Alzheimer's disease (AD), it affects an increasing number of people, changing individual lives and imposing itself as a burden on families and the health systems. Considering that the vast majority of conventional drug therapies did not lead to the expected results, this review will discuss the newly developing therapies as an alternative in the effort to stop or slow AD. Focused Ultrasound (FUS) and its derived Transcranial Pulse Stimulation (TPS) are non-invasive therapeutic approaches.

View Article and Find Full Text PDF

Utilizing a multi-task deep learning framework, this study generated synthetic CT (sCT) images from a limited dataset of Ultrashort echo time (UTE) MRI for transcranial focused ultrasound (tFUS) planning. A 3D Transformer U-Net was employed to produce sCT images that closely replicated actual CT scans, demonstrated by an average Dice coefficient of 0.868 for morphological accuracy.

View Article and Find Full Text PDF

Aim: The Transorbital and supraorbital minimally invasive approaches have been defined to reach intraorbital structures, adjacent sinuses, skull base, and other intracranial targets in this region. These approaches reduce the possible cosmetic and brain retraction-related morbidities caused by traditional transcranial approaches. Although these pathways are being studied endoscopically, a stereotactic approach has not been defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!