Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In an effort to find a suitable genetic background for efficient cellulolytic secretion, genetically diverse strains were transformed to produce core fungal cellulases namely, β-glucosidase (BGLI), endoglucanase (EGII) and cellobiohydrolase (CBHI) in various combinations and expression configurations. The secreted enzyme activity levels, gene copy number, substrate specificities, as well as hydrolysis and fermentation yields of the transformants were analysed. The effectiveness of the partially cellulolytic yeast transformants to convert two different pre-treated corn residues, namely corn cob and corn husk was then explored. Higher secretion titers were achieved by cellulolytic strains with the YI13 genetic background and cellulolytic transformants produced up to 1.34 fold higher glucose concentrations (g/L) than a control composed of equal amounts of each enzyme type. The transformant co-producing BGLI and EGII in a secreted ratio of 1:15 (cellulase activity unit per gram dry cell weight) converted 56.5% of the cellulose present in corn cob to glucose in hydrolysis experiments and yielded 4.05 g/L ethanol in fermentations. We demonstrate that the choice of optimal genetic background and cellulase activity secretion ratio can improve cellulosic ethanol production by consolidated bioprocessing yeast strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.enzmictec.2019.109382 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!