Background: Chinese wild grapevine (Vitis amurensis) has remarkable cold stress tolerance, exceeding that of the common cultivated grapevine (Vitis vinifera L.).

Result: Here, we surveyed the expression dynamics of microRNAs (miRNAs) across Chinese wild grapevine (cv. Beibinghong) and cultivated grapevine (cv. Cabernet Sauvignon) under cold stress using high-throughput sequencing. We identified 186 known miRNAs in cultivated grape and 427 known miRNAs in Beibinghong. Of the identified miRNAs, 59 are conserved miRNAs orthologous in Cabernet Sauvignon and Beibinghong. In addition, 105 and 129 novel miRNAs were identified in Cabernet Sauvignon and Beibinghong, respectively. The expression of some miRNAs was related to cold stress both in Cabernet Sauvignon and Beibinghong. Many cold-related miRNAs in Cabernet Sauvignon and Beibinghong were predicted to target stress response-related genes such as MYB, WRKY, bHLH transcription factor genes, and heat shock protein genes. However, the expression tendency under cold treatment of many of these miRNAs was different between Cabernet Sauvignon and Beibinghong. Different modes of expression of cultivated and Chinese wild grape miRNAs were indicated in key pathways under cold stress by degradome, target prediction, GO, and KEGG analyses.

Conclusion: Our study indicated three likely reasons that led to the different cold stress tolerance levels of Cabernet Sauvignon and Beibinghong. Specifically, there may be (1) differential expression of orthologous miRNAs between cultivated grapevine and Chinese wild grape; (2) species-specific miRNAs or target genes; or (3) different regulatory models of miRNAs in cultivated and Chinese wild grape in some key pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794902PMC
http://dx.doi.org/10.1186/s12864-019-6111-5DOI Listing

Publication Analysis

Top Keywords

cabernet sauvignon
28
chinese wild
24
sauvignon beibinghong
24
cold stress
20
cultivated grapevine
16
mirnas
13
wild grapevine
12
mirnas cultivated
12
wild grape
12
grapevine vitis
8

Similar Publications

The honeydew moth, Millière (Lepidoptera: Pyralidae), is native to the Mediterranean Basin. However, it has recently been reported as an emerging grapevine pest in southern European Union countries and in the Middle East, North Africa, and South America. This may be attributed to the global warming trends.

View Article and Find Full Text PDF

The key flavor compound formation pathways resulting from indigenous microorganisms during the spontaneous fermentation of wine have not been thoroughly described. In this study, high-throughput metagenomic sequencing and untargeted metabolomics were utilized to investigate the evolution of microbial and metabolite profiles during spontaneous fermentation in industrial-scale wine production and to elucidate the formation mechanisms of key flavor compounds. Metabolome analysis showed that the total amount of esters, fatty acids, organic acids, aldehydes, terpenes, flavonoids, and non-flavonoids increased gradually during fermentation.

View Article and Find Full Text PDF

Manganese (Mn) is involved in plant metabolism as an enzyme cofactor. However, the role of Mn in the formation of volatile compounds in grapes has rarely been studied. To address this gap, this study explored the effect of foliar Mn application on the aroma traits of grapes and wine.

View Article and Find Full Text PDF

Grapevine cell response to carbon deficiency requires transcriptome and methylome reprogramming.

Hortic Res

January 2025

Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d'Ornon, France.

Sugar limitation has dramatic consequences on plant cells, which include cell metabolism and transcriptional reprogramming, and the recycling of cellular components to maintain fundamental cell functions. There is however no description of the contribution of epigenetic regulations to the adaptation of plant cells to limited carbon availability. We investigated this question using nonphotosynthetic grapevine cells (, cv Cabernet Sauvignon) cultured with contrasted glucose concentrations.

View Article and Find Full Text PDF

The individual (poly)phenols of red wines cultivated in two different Western Balkan wine-growing regions were determined using the HPLC method, while the ABTS and DPPH tests were employed to investigate antioxidant activity. The reduction potential of antioxidants was determined by FRAP assay. Five distinct classes of phenolic compounds, including phenolic acids, flavan-3-ols, flavonols, stilbenes, and anthocyanins, were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!