TGF-β/Smad signaling is a major pathway in progressive fibrotic processes, and further studies on the molecular mechanisms of TGF-β/Smad signaling are still needed for their therapeutic targeting. Recently, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) was shown to improve renal fibrosis, making it an attractive target for chronic kidney diseases (CKDs). Here, we show the mechanism by which PGC-1α regulates the TGF-β/Smad signaling pathway using HK-2 cell lines stably overexpressing empty vector (mock cells) or (PGC1α cells). Stable PGC-1α overexpression negatively regulated the expression of TGF-β-induced epithelial-mesenchymal transition (EMT) markers (fibronectin, E-cadherin, vimentin, and α-SMA) and EMT-related transcription factors (Snail and Slug) compared to mock cells, inhibiting fibrotic progression. Interestingly, among molecules upstream of Smad2/3 activation, the gene expression of only TGFβRI, but not TGFβRII, was downregulated in PGC-1α cells. In addition, the downregulation of TGFβRI by PGC-1α was associated with the upregulation of , miRNA for which the 3' untranslated region (UTR) of TGFβRI contains a binding site. In conclusion, PGC-1α suppresses TGF-β/Smad signaling activation via targeting TGFβRI downregulation by upregulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829475 | PMC |
http://dx.doi.org/10.3390/ijms20205084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!