LoRaWAN has become popular as an IoT enabler. The low cost, ease of installation and the capacity of fine-tuning the parameters make this network a suitable candidate for the deployment of smart cities. In northern Sweden, in the smart region of Skellefteå, we have deployed a LoRaWAN to enable IoT applications to assist the lives of citizens. As Skellefteå has a subarctic climate, we investigate how the extreme changes in the weather happening during a year affect a real LoRaWAN deployment in terms of SNR, RSSI and the use of SF when ADR is enabled. Additionally, we evaluate two propagation models (Okumura-Hata and ITM) and verify if any of those models fit the measurements obtained from our real-life network. Our results regarding the weather impact show that cold weather improves the SNR while warm weather makes the sensors select lower SFs, to minimize the time-on-air. Regarding the tested propagation models, Okumura-Hata has the best fit to our data, while ITM tends to overestimate the RSSI values.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6833474 | PMC |
http://dx.doi.org/10.3390/s19204414 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!