Novel Aminoacridine Sensors Based on Molecularly Imprinted Hybrid Polymeric Membranes for Static and Hydrodynamic Drug Quality Control Monitoring.

Materials (Basel)

Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.

Published: October 2019

Novel biomimetic potentiometric ion-selective electrodes (ISEs) were fabricated and designed for the assessment of aminoacridine (ACR) based on newly synthesized imprinted polymer (MIP) membranes. Thermal polymerization of methacrylic acid (MAA) or acrylamide (AM) as function monomer, aminoacridine as a template and ethylene glycol dimethacrylate (EGDMA) as across-linker, were utilizedto give the molecular recognition part. The membranes of sensors I andII consist of MIP based MAA and AM, respectively, dispersed in a poly(vinyl chloride) membrane plasticized with dioctyl phthalate (DOP) in the ratio of 3.0 wt%, 32.2 wt% and 64.8 wt%, respectively. Sensors III and IV were similarly prepared with added 1.0 wt% tetraphenyl borate (TPB) as an anionic discriminator. Sensors I and II exhibited near-Nernstian potential response to ACR with slopes of 51.2 ± 1.3 and 50.5 ± 1.4 mV/decade in a 0.01 M phosphate buffer of pH 6.0. The linear response coversthe concentration range of 5.2 × 10 to 1.0 × 10 M with a detection limit of 0.05 and 0.17 μg/mL for sensors I and II, respectively. The performance characteristics of these sensors were evaluated under static and hydrodynamic mode of operations. They were used for quality control assessment of aminoacridine in some pharmaceutical preparations and biological samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829627PMC
http://dx.doi.org/10.3390/ma12203327DOI Listing

Publication Analysis

Top Keywords

static hydrodynamic
8
quality control
8
assessment aminoacridine
8
sensors
6
novel aminoacridine
4
aminoacridine sensors
4
sensors based
4
based molecularly
4
molecularly imprinted
4
imprinted hybrid
4

Similar Publications

Kinetics of vapor-liquid and vapor-solid phase separation under gravity.

Soft Matter

January 2025

Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.

We study the kinetics of vapor-liquid and vapor-solid phase separation of a hydrodynamics preserving three-dimensional one-component Lennard Jones system in the presence of an external gravitational field using extensive molecular dynamic simulation. A bicontinuous domain structure is formed when the homogeneous system near the critical density is quenched inside the coexistence region. In the absence of gravity, the domain morphology is statistically self-similar and the length scale grows as per the existing laws.

View Article and Find Full Text PDF

Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.

View Article and Find Full Text PDF

A filter inspired by deep-sea glass sponges for oil cleanup under turbulent flow.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.

Oil spill disasters lead to widespread and long-lasting social, economical, environmental and ecological impacts. Technical challenges remain for conventional static adsorption due to hydrodynamic instability under complex water-flow conditions, which results in low oil-capture efficiency, time delay and oil escape. To address this issue, we design a vortex-anchored filter inspired by the anatomy of deep-sea glass sponges (E.

View Article and Find Full Text PDF

While waves, swells and currents are important drivers of the ocean, their specific influence on the biocolonization of marine surfaces has been little studied. The aim of this study was to determine how hydrodynamics influence the dynamics of microbial communities, metabolic production, macrofoulers and the associated vagile fauna. Using a field device simulating a shear stress gradient, a multi-scale characterization of attached communities (metabarcoding, LC-MS, biochemical tests, microscopy) was carried out for one month each season in Toulon Bay (northwestern Mediterranean).

View Article and Find Full Text PDF

We present a design and first use of a kJ level laser facility for research of non-local thermodynamic equilibrium atomic physics using the buried layer target method. The target design included a metal layer buried inside a plastic tamper with thicknesses tailored to the expected laser intensities. The target was illuminated from each side by two laser beams with intensities of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!