Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The study concentrates on researching possibilities of using computer image analysis and neural modeling in order to assess selected quality discriminants of spray-dried chokeberry powder. The aim of the paper is the quality identification of chokeberry powders on account of their highest dying power, the highest bioactivity, as well as technologically satisfying looseness of the powder. The article presents neural models with vision techniques backed up by devices such as digital cameras, as well as an electron microscope. The reduction in size of input variables with PCA has an influence on improving the processes of learning data sets, thus increasing the effectiveness of identifying chokeberry fruit powders included in digital pictures, which is shown in the results of the conducted research. The effectiveness of image recognition is presented by classifying abilities, as well as low Root Mean Square Error (RMSE), for which the best results are achieved with a typology of network type Multi-Layer Perceptron (MLP). The selected networks type MLP are characterized by the highest degree of classification at 0.99 and RMSE at 0.11 at most at the same time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832235 | PMC |
http://dx.doi.org/10.3390/s19204413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!