A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neural Image Analysis and Electron Microscopy to Detect and Describe Selected Quality Factors of Fruit and Vegetable Spray-Dried Powders-Case Study: Chokeberry Powder. | LitMetric

The study concentrates on researching possibilities of using computer image analysis and neural modeling in order to assess selected quality discriminants of spray-dried chokeberry powder. The aim of the paper is the quality identification of chokeberry powders on account of their highest dying power, the highest bioactivity, as well as technologically satisfying looseness of the powder. The article presents neural models with vision techniques backed up by devices such as digital cameras, as well as an electron microscope. The reduction in size of input variables with PCA has an influence on improving the processes of learning data sets, thus increasing the effectiveness of identifying chokeberry fruit powders included in digital pictures, which is shown in the results of the conducted research. The effectiveness of image recognition is presented by classifying abilities, as well as low Root Mean Square Error (RMSE), for which the best results are achieved with a typology of network type Multi-Layer Perceptron (MLP). The selected networks type MLP are characterized by the highest degree of classification at 0.99 and RMSE at 0.11 at most at the same time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832235PMC
http://dx.doi.org/10.3390/s19204413DOI Listing

Publication Analysis

Top Keywords

image analysis
8
selected quality
8
chokeberry powder
8
neural image
4
analysis electron
4
electron microscopy
4
microscopy detect
4
detect describe
4
describe selected
4
quality factors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!