Chronic stress can damage homeostasis and induce various primary diseases. Although chronic cold stress is becoming an increasing problem for people who must work or live in extreme environments, risk-induced diseases in the central nervous system remain unstudied. Male C57BL/6 mice were exposed to an environment of 4 °C, 3 h per day for 1, 2, and 3 weeks and homeostasis in the hippocampus and neuronal apoptosis were evaluated by Western blotting, immunohistochemistry, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and immunofluorescence. The phenomena of oxidation stress, MAPK signaling pathway activation, anti-oxidation protein release, neuronal apoptosis increases, and neuronal proliferation inhibition were demonstrated in the CA1 and CA3 regions of mouse hippocampal tissues following cold exposure. We speculated that these phenomena were mediated by the MAPK pathway and were closely linked with oxidative stress in the hippocampus. This study provides novel concepts regarding neurodegenerative diseases, suggesting that chronic cold stress may be a critical factor to induce neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826747PMC
http://dx.doi.org/10.3390/brainsci9100273DOI Listing

Publication Analysis

Top Keywords

chronic cold
12
mapk signaling
8
signaling pathway
8
pathway activation
8
ca1 ca3
8
ca3 regions
8
cold exposure
8
cold stress
8
neuronal apoptosis
8
neurodegenerative diseases
8

Similar Publications

Enriched environment prevents hypernociception and depression-like behavior in a psychiatric disorder and neuropathic pain comorbidity experimental condition.

Physiol Behav

December 2024

Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo,14049-900, Brazil; Behavioural Neurosciences Institute (INeC), Av. Bandeirantes 3900, Ribeirão Preto, 14040-900, São Paulo, Brazil. Electronic address:

Pain is a multifactorial debilitating condition associated with some psychiatric comorbidities such as generalized anxiety and depression. Concerning pharmacological treatment, which is often inefficient or associated with intense side effects, the physical and social context may be fundamental for patient's health improvement. In this sense, we sought to assess the impact of an enriched environment (EE) on neuropathic pain (NP) and depression comorbid.

View Article and Find Full Text PDF

PIKfyve (1-phosphatidylinositol 3-phosphate 5-kinase), a lipid kinase, plays an important role in generating phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P). SGC-PIKFYVE-1, a potent and selective inhibitor of PIKfyve, has been used as a chemical probe to explore pathways dependent on PIKfyve activity. Based on reported changes in membrane dynamics and ion transport in response to PIKfyve inhibition, we hypothesized that pharmacological inhibition of PIKfyve could modulate pain.

View Article and Find Full Text PDF

Hyperoside ameliorates neuropathic pain by modulating the astroglial reactivity in the vlPAG.

Neuropharmacology

December 2024

Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China. Electronic address:

Hyperoside, a natural flavonoid, exhibits a wide range of biological activities, including analgesic effects on acute and chronic inflammatory pain. This study illustrates that repeated intraperitoneal administration or microinjection of hyperoside into the ventrolateral periaqueductal grey (vlPAG) alleviated mechanical allodynia, cold allodynia, and abnormal gait induced by spared nerve injury (SNI) in male mice. Furthermore, repeated hyperoside administration suppressed SNI-induced astrocyte reactivity in the vlPAG.

View Article and Find Full Text PDF

The neural mechanisms of the affective-motivational symptoms of chronic pain are poorly understood. In chronic pain, our innate coping mechanisms fail to provide relief. Hence, these behaviors are manifested at higher frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!