AI Article Synopsis

  • Leonardite-based biostimulants, like BLACKJAK (humic acid), enhance plant growth and yield by stimulating metabolic changes in plants through foliar application.
  • The study examined how different doses of BLACKJAK affect gene expression related to sugar beet growth, testing 33 genes across various pathways.
  • Results showed that 15 genes were significantly up-regulated in response to BLACKJAK, particularly those involved in mitochondrial respiration, nitrogen metabolism, and nutrient uptake, indicating a positive impact on plant growth and defense mechanisms.

Article Abstract

Leonardite-based biostimulants are a large class of compounds, including humic acid substances. Foliar application of biostimulants at field level improves plant growth, yield and quality through metabolic changes and stimulation of plant proton pumps. The present study aimed at identifying optimum dosage of BLACKJAK, a humic acid-based substance, which is able to modify genes involved in sugar beet growth. Thirty-three genes belonging to various biochemical pathway categories were tested in leaves of treated sugar beet ( L.) samples to assess gene expression profiling in response to BLACKJAK. Seedlings of a diploid and multigerm variety were grown in plastic pots and sprayed with two dilutions of BLACKJAK (dilution 1:500-1.0 mg C L and dilution 1:1000-0.5 mg C L). Leaf samples were collected after 24, 48, and 72 h treatment with BLACKJAK for each dilution. RNA was extracted and the quantification of gene expression was performed while using an OpenArray platform. Results of analysis of variance demonstrated that, 15 genes out of a total of 33 genes tested with OpenArray qPCR were significantly affected by treatment and exposure time. Analysis for annotation of gene products and pathways revealed that genes belonging to the mitochondrial respiratory pathways, nitrogen and hormone metabolisms, and nutrient uptake were up-regulated in the BLACKJAK treated samples. Among the up-regulated genes, Bv_PHT2;1 and Bv_GLN1 expression exerted a 2-fold change in 1:1000 and 1:500 BLACKJAK concentrations. Overall, the gene expression data in the BLACKJAK treated leaves demonstrated the induction of plant growth-related genes that were contributed almost to amino acid and nitrogen metabolism, plant defense system, and plant growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6970231PMC
http://dx.doi.org/10.3390/ht8040018DOI Listing

Publication Analysis

Top Keywords

sugar beet
12
gene expression
12
expression profiling
8
genes
8
leaves treated
8
plant growth
8
genes belonging
8
blackjak dilution
8
blackjak treated
8
blackjak
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!