We investigated the effects of a fibrin-hyaluronic acid hydrogel (FBG-HA) and fibroblast growth factor 18 (FGF-18) for nucleus pulposus (NP) regeneration. Healthy bovine ( = 4) and human degenerated NP cells ( = 4) were cultured for 14 days in FBG-HA hydrogel with FGF-18 (∆51-mutant or wild-type) in the culture medium. Gene expression, DNA content, and glycosaminoglycan (GAG) synthesis were evaluated on day 7 and 14. Additionally, histology was performed. Human NP cells cultured in FBG-HA hydrogel showed an increase in collagen type II (COL2) and carbonic anhydrase XII (CA12) gene expression after 14 or 7 days of culture, respectively. GAG release into the conditioned medium increased over 14 days. Healthy bovine NP cells showed increased gene expression of ACAN from day 7 to day 14. Wild type FGF-18 up-regulated CA12 gene expression of human NP cells. Histology revealed an increase of proteoglycan deposition upon FGF-18 stimulation in bovine but not in human NP cells. The FBG-HA hydrogel had a positive modulatory effect on human degenerated NP cells. Under the tested conditions, no significant effect of FGF-18 was observed on cell proliferation or GAG synthesis in human NP cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834142 | PMC |
http://dx.doi.org/10.3390/ijms20205036 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFPharm Biol
December 2025
The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.
Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!