Huntington's disease (HD) is caused by CAG repeat expansion within the HTT gene, with the dysfunction and eventual loss of striatal medium spiny neurons a notable feature. Since medium spiny neurons receive high amounts of synaptic input, we hypothesised that this vulnerability originates from an inability to sustain presynaptic performance during intense neuronal activity. To test this hypothesis, primary cultures of either hippocampal or striatal neurons were prepared from either wild-type mice or a knock-in HD mouse model which contains 140 poly-glutamine repeats in the huntingtin protein (htt). We identified a striatum-specific defect in synaptic vesicle (SV) endocytosis in htt neurons that was only revealed during high frequency stimulation. This dysfunction was also present in neurons that were heterozygous for the mutant HTT allele. Depletion of endogenous huntingtin using hydrophobically-modified siRNA recapitulated this activity-dependent defect in wild-type neurons, whereas depletion of mutant huntingtin did not rescue the effect in htt neurons. Importantly, this SV endocytosis defect was corrected by overexpression of wild-type huntingtin in homozygous htt neurons. Therefore, we have identified an activity-dependent and striatum-specific signature of presynaptic dysfunction in neurons derived from pre-symptomatic HD mice, which is due to loss of wild-type huntingtin function. This presynaptic defect may render this specific neuronal subtype unable to operate efficiently during high frequency activity patterns, potentially resulting in dysfunctional neurotransmission, synapse failure and ultimately degeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2019.104637 | DOI Listing |
Methods Cell Biol
January 2025
State University of Minas Gerais, Department of Biomedical Sciences and Health, Passos, MG, Brazil. Electronic address:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada. Electronic address:
The consequences of non-pathogenic huntingtin (HTT) reduction in the mature brain are of substantial importance as clinical trials for numerous HTT-lowering therapies are underway; many of which are non-selective in that they reduce both mutant and wild type protein variants. In this study, we injected CaMKII-promoted AAV-Cre directly into the hippocampus of adult HTT floxed mice to explore the role of wild-type huntingtin (wtHTT) in adult hippocampal pyramidal neurons and the broader implications of its loss. Our findings reveal that wtHTT depletion results in profound macroscopic morphological abnormalities in hippocampal structure, accompanied by significant reactive gliosis.
View Article and Find Full Text PDFNeurosci Res
January 2025
Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan; School of Human Care Studies, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nishin city, Aichi 470-0196, Japan. Electronic address:
Huntingtin-associated protein 1 (HAP1) is an essential constituent of the stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for several neurodegenerative disorders, including huntingtin (HTT) in Huntington's disease. Previous in vitro studies showed that compared to normal HTT, STB/HAP1 exhibited a higher binding affinity for mutant HTT. However, the detailed in vivo relationships of STB/HAP1 with endogenous HTT have not been clarified yet.
View Article and Find Full Text PDFNat Med
January 2025
Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease with the age at which characteristic symptoms manifest strongly influenced by inherited HTT CAG length. Somatic CAG expansion occurs throughout life and understanding the impact of somatic expansion on neurodegeneration is key to developing therapeutic targets. In 57 HD gene expanded (HDGE) individuals, ~23 years before their predicted clinical motor diagnosis, no significant decline in clinical, cognitive or neuropsychiatric function was observed over 4.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
Toxic protein aggregates are associated with various neurodegenerative diseases, including Huntington's disease (HD). Since no current treatment delays the progression of HD, we develop a mechanistic approach to prevent mutant huntingtin (mHttex1) aggregation. Here, we engineer the ATP-independent cytosolic chaperone PEX19, which targets peroxisomal membrane proteins to peroxisomes, to remove mHttex1 aggregates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!