Aims: The aim of our study is to illustrate the role of amphiregulin in trophoblast invasiveness and underlying signal cascades.
Main Methods: An immortalized human early extravillous cell line, HTR-8/SVneo, was used for this investigation. Matrigel-transwell invasion assay was used for testing the effects of amphiregulin on cell invasiveness. MMP9 and MMP2 mRNA expression level and activity were measured using Rt-qPCR and zymographic analysis. Cell signals involved in the invasion process were verified using western blot and specific inhibitors.
Key Findings: Our results showed that amphiregulin could promote HTR-8/SVneo cell invasiveness without interfering cell proliferation, and significantly upregulate the expression of MMP9 and TIMP-1 mRNAs as well as the ratio of MMP9/TIMP-1. Using specific inhibitors for MEK and PI3K signaling further indicated that, both ERK1/2 and Akt signal pathways were required for amphiregulin-induced cell invasiveness. The co-ordination between ERK1/2 and Akt signaling pathway was needed for the upregulation of MMP9 mRNA, while ERK1/2 was more essential for the upregulation of TIMP-1 mRNA. Meanwhile, we first put forward that the deficiency of amphiregulin expression in trophoblast might be compensated by the upregulation of epidermal growth factor receptor (EGFR) and heparin-binding EGF (HB-EGF) mRNA.
Significance: ERK1/2 and Akt signaling pathways mediate amphiregulin-induced upregulation of MMP9 mRNA and the MMP9/TIMP-1 ratio, which subsequently contribute to amphiregulin-promotion of HTR-8/SVneo cell invasion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2019.116899 | DOI Listing |
Adv Pharmacol Pharm Sci
January 2025
Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand.
Recently, seaweed extracts have been found to have potential in skin benefits. This study, therefore, aimed to explore phytochemical analysis, antimicrobial, antioxidant, and wound healing properties of brown seaweed ethanolic extract (SPEE) on human skin keratinocyte HaCaT cells and the possible mechanism involved. Our results indicated that SPEE contained flavonoid, phenolic, and carotenoid as the major active constituents.
View Article and Find Full Text PDFAnn Med
December 2025
Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Despite surgical and intravesical chemotherapy interventions, non-muscle invasive bladder cancer (NMIBC) poses a high risk of recurrence, which significantly impacts patient survival. Traditional clinical characteristics alone are inadequate for accurately assessing the risk of NMIBC recurrence, necessitating the development of novel predictive tools.
Methods: We analyzed microarray data of NMIBC samples obtained from the ArrayExpress and GEO databases.
Environ Toxicol
January 2025
Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Pu-Er Tea Science, Ministry of Education, Yunnan Agricultural University, Heilongtan, North of Kunming, Kunming 650201, China.
Lung cancer is the leading cause of cancer-related death. Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers and over 60% express wild-type EGFR (WT-EGFR); however, EGFR tyrosine kinase inhibitors (TKIs) have limited effect in most patients with WT-EGFR tumors. In this study, we applied network pharmacology screening and MTT screening of bioactive compounds to obtain one novel grifolic acid that may inhibit NSCLC through the EGFR-ERK1/2 pathway.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
Upon exposure to inflammatory stimuli including TNF-α, endothelial cells are activated leading to the adhesion of monocytes to their surface. These events are involved in the pathophysiology of atherosclerosis. Since TNF-α activates the NF-κB pathway, which contributes to atherosclerosis, targeting this signaling pathway may help prevent the risk of developing the disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!