For the first time, to the best of our knowledge, we demonstrated a new type of Raman laser with asymmetrical cavity at the liquid-air interface. We observed an intriguing stimulated Raman scattering (SRS) threshold dependence when the pumping laser beam waist was transferred through the liquid-air interface, and we demonstrated a paradoxical 30-fold SRS threshold reduction in the vicinity of the water-air surface. The minimum SRS threshold was achieved when the pumping laser beam waist was located at the liquid surface. To explain the abnormal SRS threshold dependence, we suggested a new lasing mechanism. Finally, we demonstrated that threshold measurements at the liquid-air interface are a reliable method to quantitatively measure the interaction length in SRS experiments with a focused beam.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.005045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!