We demonstrate, to the best of our knowledge, the first direct vortex beam generation in the 3 μm spectral region by employing an Er:YO ceramic laser. Controllable handedness with high purity is achieved by introducing asymmetric cavity loss and reducing the number of longitudinal modes. The average orbital angular momentum of the produced scalar vortex beam is quantitatively evaluated to be 0.95ħ for the LG mode and -0.94ħ for the LG mode. The corresponding optical spectrum is centered at 2710.8 and 2710.5 nm, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.004973 | DOI Listing |
This study explores the propagation dynamics of Bessel-Gaussian (BG) beams, focusing on vortex-splitting behavior under short-range atmospheric conditions with varying disturbances. Using the split-step beam propagation method, the research reveals that greater atmospheric turbulence and longer transmission distances enhance both the average vortex splitting distance and its variance while reducing the average topological charge of the received OAM mode. Conversely, laminar conditions promote beam stability.
View Article and Find Full Text PDFThe controlled visible spatial modes and vortex beams with tunable properties are highly sought after in cutting-edge applications, such as optical communication. In this study, by utilizing a hybrid pumping scheme, we demonstrate an ultra-compact, 607 nm orbital Poincaré laser based on a diode-pumped Pr:YLF laser. The system can generate various structured modes, including Laguerre-Gaussian (LG), Hermite-Gaussian (HG), and Hermite-Laguerre-Gaussian (HLG), all of which are mapped onto a first-order orbital Poincaré sphere.
View Article and Find Full Text PDFIn this paper, the focusing and tight-focusing properties of radially polarized (RP) Bessel-Gaussian (BG) rotationally-symmetric power-exponent-phase vortex beam (RPVBs) were investigated theoretically and experimentally. Based on the theory of vector beam, the propagation and tight-focusing models were derived to reveal the focusing and tight-focusing properties of the RP-BG-RPVBs by numerical simulation. Then, the experimental setup was established to validate that the RP-BG-RPVBs presented the fan-shaped and polycyclic intensity distribution, which possessed the features of RP beams, BG beams, and RPVBs, similarly.
View Article and Find Full Text PDFThis study experimentally demonstrates metasurfaces capable of producing output emissions with deflection angles greater than 75 degrees. These metasurfaces are composed of high-aspect-ratio gallium arsenide (GaAs) nano-resonators on double-sided polished GaAs substrates, operating reflectively at a wavelength of 650 nm. Beyond deflecting the incident light beam, the metasurfaces are successfully shown to generate high-deflection-angle, doughnut-shaped emissions by incorporating vortex beam (VB) structured light with a topological charge of up to 8.
View Article and Find Full Text PDFVortex light beams carrying fractional vortices have shown promising applications in many fields such as optical communications, optical encryption, and quantum information processing. Accurate detection of the topological charge of a fractional vortex phase is essential for these applications. In this paper, a simple yet effective method for measuring the fractional topological charge is proposed, which is based on the detection of the orbital angular momentum (OAM) spectrum of a fractional vortex beam diffracted by an angular grating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!