Keratin degradation is of great interest for converting agro-industrial waste into bioactive peptides and is directly relevant for understanding the pathogenesis of superficial infections caused by dermatophytes. However, the mechanism of this process remains unclear. Here, we obtained the complete genome sequence of a feather-degrading, extremely thermophilic bacterium, Fervidobacterium islandicum AW-1 and performed bioinformatics-based functional annotation. Reverse transcription PCR revealed that 57 putative protease-encoding genes were differentially expressed in substrate-dependent manners. Consequently, 16 candidate genes were highly expressed under starvation conditions, when keratin degradation begun. Subsequently, the dynamic expression profiles of these 16 selected genes in response to feathers, as determined via quantitative real-time PCR, suggested that they included four metalloproteases and two peptidases including an ATP-dependent serine protease, all of which might act as key players in feather decomposition. Furthermore, in vitro keratinolytic assays supported the notion that recombinant enzymes enhanced the decomposition of feathers in the presence of cell extracts. Therefore, our genome-based systematic and dynamic expression profiling demonstrated that these identified metalloproteases together with two additional peptidases might be primarily associated with the decomposition of native feathers, suggesting that keratin degradation can be achieved via non-canonical catalysis of several membrane-associated metalloproteases in cooperation with cytosolic proteases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017815PMC
http://dx.doi.org/10.1111/1751-7915.13493DOI Listing

Publication Analysis

Top Keywords

keratin degradation
12
fervidobacterium islandicum
8
islandicum aw-1
8
expression profiling
8
dynamic expression
8
identification keratinases
4
keratinases fervidobacterium
4
aw-1 dynamic
4
dynamic gene
4
gene expression
4

Similar Publications

Loss of hepatocyte growth factor activator inhibitor type 1 (HAI-1) upregulates MMP-9 expression and induces degradation of the epidermal basement membrane.

Hum Cell

December 2024

Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan.

Hepatocyte growth factor activator inhibitor type 1 (HAI-1), which is encoded by the SPINT1 gene, is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. We had previously demonstrated that HAI-1 is critical for placental development, epidermal keratinization, and maintenance of keratinocyte morphology by regulating cognate proteases, matriptase and prostasin. After performing ultrastructural analysis of Spint1-deleted skin tissues, our results showed that Spint1-deleted epidermis exhibited partially disrupted epidermal basement-membrane structures.

View Article and Find Full Text PDF

A 54-year-old man presented with constipation with a six-month duration and a 5 kg weight loss over 10 months. He had undergone a subtotal gastrectomy and chemotherapy for advanced gastric cancer 13 years earlier. A colonoscopy revealed a firm, circular, in-growing mass in the rectum.

View Article and Find Full Text PDF

Proteomic Analysis of Single Hairs.

Methods Mol Biol

December 2024

University of California - Davis, Department of Environmental Toxicology, Davis, CA, USA.

Hair is a ubiquitous and robust mammalian tissue with biological, clinical, forensic, social, and economic significance. The hair shaft proteome reflects both structural proteins, dominated by cuticular intermediate filament keratins and associated proteins, and proteins involved in the final cellular processes of terminally differentiating corneocytes prior to cornification. These distinct biological processes involve cell maintenance, biosynthesis, senescence, and xenobiotic response.

View Article and Find Full Text PDF

Synovial sarcoma is an aggressive soft-tissue cancer that shows limited responses to current immunotherapeutic approaches using immune checkpoint blockade or adoptive cell therapy. To improve immunotherapy for this cancer, understanding how the immune cells in the tumor microenvironment associate with histological subtype, disease progression and current therapies is vital. To evaluate the immune infiltrate in synovial sarcoma in relation to histological subtype, disease progression and in response to cytotoxic treatment, we performed immunodetection of T cells, CD68 myeloid cells, endothelial cells and keratin on a series of 41 synovial sarcoma patients at various stages of disease.

View Article and Find Full Text PDF

Introduction: Higher concentrations of the small-cell lung cancer (SCLC) serum marker, pro-gastrin-releasing peptide (proGRP), in lung inflammations has been indicated in literature. The objective of this study was to compare serum proGRP concentration in pneumonia, chronic obstructive pulmonary disease (COPD) and early-stage primary lung cancers.

Materials And Methods: An observational study was performed to assess serum proGRP against other lung cancer markers in pneumonia, COPD and in stage 1/2 carcinomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!