The magnetization reversal in magnetic FePt nanoelements having Reuleaux 3D geometry is studied using micromagnetic simulations employing Finite Element discretizations. Magnetic skyrmions are revealed in different systems generated by the variation of the magnitude of the magnetocrystalline anisotropy which was kept normal to the nanoelement's base and parallel to the applied external field. The topological quantity of skyrmion number is computed in order to characterize micromagnetic configurations exhibiting skyrmionic formations. Micromagnetic configurations with a wide range of skyrmion numbers between -3 and 3 are indicative for the existence of one or multiple skyrmions that have been detected and stabilized in a range of external fields. Internal magnetic structures are shown consisting of Bloch type skyrmionic entities in the bulk altered to Néel skyrmions on the nanoelement's bottom and top base surfaces. The actual sizes of the formed skyrmions and the internal magnetization structures were computed. In particular, the sizes of the generated and persistent skyrmions were calculated as functions of the magnetocrystalline anisotropy value and of the applied external magnetic field. It is shown that the size of skyrmions is linearly dependent on the external field value. The slope of the linear curve can be controlled by the magnetocrystalline anisotropy value. The magnetic skyrmions can be created for FePt magnetic systems lacking of chiral interactions by designing the geometry-shape of the nanoparticle and by controlling the value of magnetocrystalline anisotropy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr04829d | DOI Listing |
Adv Mater
January 2025
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Interstitial quasi-atomic electrons (IQEs) in the quantized energy levels of positively charged cavities possess a substantial own magnetic moment and control the magnetism of crystalline electrides depending on the interaction with surrounding cations. However, weak spin-orbit coupling and gentle exchange interaction restricted by the IQEs preclude a large magnetic anisotropic, remaining a challenge for a hard magnetism. It is reported that 2D [ReC]·2e electrides (Re = Er, Ho, Dy, and Tb) show the permanent magnetism in a ferrimagnetic ground state, mimicking the ferrites composed of magnetic sublattices with different spin polarizations.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, 4056, Switzerland.
Many-body interactions in metal-organic frameworks (MOFs) are fundamental for emergent quantum physics. Unlike their solution counterpart, magnetization at surfaces in low-dimensional analogues is strongly influenced by magnetic anisotropy (MA) induced by the substrate and still not well understood. Here, on-surface coordination chemistry is used to synthesize on Ag(111) and superconducting Pb(111) an iron-based spin chain by using pyrene-4,5,9,10-tetraone (PTO) precursors as ligands.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
Vertically stacked van der Waals (vdW) heterostructures not only provide a promising platform in terms of band alignment, but also constitute fertile ground for fundamental science and attract tremendous practical interest towards their use in various device applications. Beyond most two-dimensional (2D) materials, which are intrinsically non-magnetic, CrI is a novel material with magnetism dependent on its vdW-bonded layers, promising potential spintronics applications. However, for particular device applications, a heterostructure is commonly fabricated and it is necessary to examine the effect of the interface or contact atoms on the magnetic properties of the heterostructure.
View Article and Find Full Text PDFNat Commun
November 2024
School of Materials Science and Engineering, Shanghai University, Shanghai, China.
Phys Rev Lett
November 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The electrical control of perpendicular magnetization without the need for external magnetic fields holds significant potential for next-generation spintronic devices. In this Letter, we have identified a 3m-symmetry dependent field-free switching phenomenon in (111)-oriented Tm_{3}Fe_{5}O_{12} single-crystal films capped with a platinum (Pt) layer. We demonstrate that this distinctive property arises due to the spontaneous breaking of mirror symmetry in magnetocrystalline anisotropy (MCA) for (111)-oriented magnetic films with a cubic structure, which results in a local out-of-plane MCA effective field with a 3m-symmetry dependence on the azimuth angle when the magnetization lies in the (111) plane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!