Catechols are prone to oxidative polymerization as well as complex formation with metal ions. These two features of catechols have played an important role in the construction of functional films on various surfaces. For example, marine antifouling films and antibacterial films were successfully prepared by oxidative polymerization and metal complexation of catechol-containing molecules, respectively. However, the effect of simultaneous metal complexation and oxidative polymerization on functional film formation has not yet been fully investigated. Herein, as a derivative of 3-(3,4-dihydroxyphenyl)-l-alanine (DOPA), we synthesized an ethylene glycol-derivatized DOPA (-DOPA) and formed -DOPA thin films based on (1) oxidative polymerization and (2) the complexation between catechol groups of -DOPA and iron(III) (Fe) ions. Either or both approaches were used for the film formation. -DOPA film formation was characterized by ellipsometry, contact angle goniometry, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy. Among the conditions used, the formation of a uniform film was only achieved with the dual cross-linking system of Fe complexation and oxidation-induced covalent bond formation. Compared to the uncoated substrate and other -DOPA films prepared under different conditions, the uniform -DOPA film strongly inhibited bacterial adhesion, showing excellent antibacterial capability. We think that our surface-coating strategy can be applied to medical devices, tools, and implants where bacterial adhesion and biofilm formation should be prevented. This work can also serve as a basis for the construction of functional thin films for other catechol-functionalized materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b02572 | DOI Listing |
Langmuir
January 2025
Gulliver, CNRS, ESPCI Paris, Université PSL, Paris 75005, France.
We experimentally study the formation of surface patterns in grafted hydrogel films of nanometer-to-micrometer thickness during imbibition-driven swelling followed by evaporation-driven shrinking. Creases are known to form at the hydrogel surface during swelling; the wavelength of the creasing pattern is proportional to the initial thickness of the hydrogel film with a logarithmic correction that depends on microscopic properties of the hydrogel. We find that, although the characteristic wavelength of the pattern is determined during swelling, the surface morphology can be significantly influenced by evaporation-induced shrinking.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China.
The deposition of alkali metals on oxide surfaces has garnered significant interest due to their critical role in enhancing various catalytic processes. However, the atomic-scale characterization of these structures remains elusive, owing to the complex and competing interactions among the oxygen, the alkali metals, and the metal atoms within the oxides. In this work, we grew alkali metals (Na, K, Cs) on the copper oxide films on the Cu(111) surface and found the formation of hexagonally ordered monolayer films.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
The side reactions accompanying the charging and discharging process, as well as the difficulty in decomposing the discharge product lithium peroxide, have been important issues in the research field of lithium-oxygen batteries for a long time. Here, single atom Ta supported by CoO hollow sphere was designed and synthesized as a cathode catalyst. The single atom Ta forms an electron transport channel through the Ta-O-Co structure to stabilize octahedral Co sites, forming strong adsorption with reaction intermediates and ultimately forming a film-like lithium peroxide that is highly dispersed.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences(CAS), Suzhou, 215123, P. R. China.
The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Porous lead iodide (PbI) film is crucial for the complete reaction between PbI and ammonium salts in sequential-deposition technology so as to achieve high crystallinity perovskite film. Herein, it is found that the tensile stress in tin (IV) oxide (SnO) electron transport layer (ETL) is a key factor influencing the morphology and crystallization of PbI films. Focusing on this, lithium trifluoromethanesulfonate (LiOTf) is used as an interfacial modifier in the SnO/PbI interface to decrease the tensile stress to reduce the necessary critical Gibbs free energy for PbI nuclei formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!