Capitalizing on the massive increase in sample concentrations which are produced by extremely low elution volumes, nanoliquid chromatography-electrospray ionization-tandem mass spectrometry (nano-LC-ESI-MS/MS) is currently one of the most sensitive analytical technologies for the comprehensive characterization of complex protein samples. However, despite tremendous technological improvements made in the production and the packing of monodisperse spherical particles for nanoflow high-pressure liquid chromatography (HPLC), current state-of-the-art systems still suffer from limits in operation at the maximum potential of the technology. With the recent introduction of the μPAC system, which provides perfectly ordered micropillar array based chromatographic support materials, completely new chromatographic concepts for optimization toward the needs of ultrasensitive proteomics become available. Here we report on a series of benchmarking experiments comparing the performance of a commercially available 50 cm micropillar array column to a widely used nanoflow HPLC column for the proteomics analysis of 10 ng of tryptic HeLa cell digest. Comparative analysis of LC-MS/MS-data corroborated that micropillar array cartridges provide outstanding chromatographic performance, excellent retention time stability, and increased sensitivity in the analysis of low-input proteomics samples and thus repeatedly yielded almost twice as many unique peptide and unique protein group identifications when compared to conventional nanoflow HPLC columns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6873107PMC
http://dx.doi.org/10.1021/acs.analchem.9b02899DOI Listing

Publication Analysis

Top Keywords

micropillar array
12
low-input proteomics
8
nanoflow hplc
8
improved sensitivity
4
sensitivity low-input
4
proteomics
4
micropillar
4
proteomics micropillar
4
micropillar array-based
4
array-based chromatography
4

Similar Publications

Numerical Investigation of a Microfluidic Biosensor Based on I-Shaped Micropillar Array Electrodes.

Sensors (Basel)

December 2024

Department of Electrical and Computer Engineering, Bucknell University, Lewisburg, PA 17837, USA.

Micropillar array electrodes offer several advantages, such as enhanced mass transport, lower detection limits, and the potential for miniaturization, making them instrumental in the design and fabrication of electrochemical biosensors. The performance of these biosensors is influenced by electrode geometry, including parameters like shape and height, which affect surface area and overall sensitivity. In this study, we designed a microfluidic electrochemical biosensor featuring micropillar array electrodes, modeled in COMSOL Multiphysics.

View Article and Find Full Text PDF

Effects of cell shape and nucleus shape on epithelial-mesenchymal transition revealed using chimeric micropatterns.

Biomaterials

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China. Electronic address:

Epithelial-mesenchymal transition (EMT) is a key phenotypic switch in cancer metastasis, leading to fatal consequences for patients. Under geometric constraints, the morphology of cancer cells changes in both cellular and subcellular levels, whose effects on EMT are, however, not fully understood. Herein, we designed and fabricated chimeric micropatterns of polystyrene (PS) with adhesion contrast to reveal the impacts of cell shapes and nuclear shapes on EMT in a decoupled way.

View Article and Find Full Text PDF

Retroreflective Multichrome Microdome Arrays Created by Single-Step Reflow.

Adv Mater

December 2024

Department of Chemical and Biomolecular Engineering, and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.

Structural colors are known for their tunability, fade resistance, and eco-friendliness. Recent advancements have shown that such colors can be efficiently produced using total internal reflection (TIR) on high-refractive-index convex microstructures without the need for periodic nanostructures. However, a reproducible, fast, and programmable production strategy for these microstructures is essential for commercial applications.

View Article and Find Full Text PDF

: Pancreatic ductal adenocarcinoma acquired resistance to chemotherapy poses a major limitation to patient survival. Despite understanding some biological mechanisms of chemoresistance, much about those mechanisms remains to be uncovered. Mechanobiology, which studies the physical properties of cells, holds promise as a potential target for addressing the challenges of chemoresistance in PDAC.

View Article and Find Full Text PDF

Ultra-Fast, Unidirectional Water Absorption on Wood Ear.

Adv Mater

November 2024

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100191, P. R. China.

Materials exhibiting rapid, unidirectional liquid absorption are desirable for comfort textiles and wound dressings. Implementing chemical or structural gradient along the vertical axis of substrates is an effective way to achieve such properties. Liquid's lateral spreading across the substrate affects area occurring vertical imbibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!