The capsaicin in hot peppers is an important biological active substance that is widely used in food and medicine. In this work, six capsaicin derivatives such as N-(4-Hydroxy-3-acetophenone benzyl)acrylamide (A), 2-hydroxy-3-(octyloxy)phenyl-5-acrylamidemethylbenzene phenyl methanone (B), N-(2,5-dihydroxybenzene)acetamide (C), N-(5-acetamidemethyl benzene-2,4-dihydroxybenzene)acetamide (D), 4-acetamideme thylbenzene-2-benzylphenol (E), and N-(2-methyl-4-hydroxy-5-methylthiobenzene)acetamide (F) were synthesized via the Friedel-Crafts (F-C) alkylation reaction and were characterized using IR, H NMR, and HRMS. The antioxidant activity of compounds was evaluated using the reducing power and DPPH radical (DPPH·) scavenging assays, and Vitamin C (Vc) was used as a control. The antibacterial activity was tested using minimum inhibition concentration (MIC) and antibacterial rate assays, and Escherichia coli and Staphylococcus aureus were used as the tested strain. The results showed that all six capsaicin derivatives had certain antioxidant and antibacterial activities, and the activities increased with increasing mass concentration. The best properties were obtained for compounds C and F; the antioxidant activity of compound C was similar to Vc and the MIC of compound F was 0.0313 mg/ml, its antibacterial rate was greater than 99% at 3 mg/ml. PRACTICAL APPLICATIONS: As a vegetable, peppers can be eaten fresh or processed to other forms such as pepper powder or pepper jam, and it is very popular because of its long history, unique flavor, and special functions. Our current study shows that capsaicin derivatives have good antioxidant and antibacterial activities, and therefore, the present study of capsaicin derivatives with good activity provides a good foundation for future applications in natural food additives and medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfbc.13061 | DOI Listing |
J Food Sci
December 2024
Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico.
The effect of solvents with different polarities on the recovery of phytochemicals (carotenoids, capsaicinoids, and phenolic compounds) from habanero pepper (Capsicum chinense) and their association with antioxidant activity (ABTS and DPPH) was evaluated through Ultra-Performance-Liquid Chromatography coupled with a Photodiode Array Detector and a Electrospray Ionization Mass Spectrometry (UPLC-PDA-ESI-MS)-based chemometric analysis, including linear correlation, multiple linear regression, and principal component analysis (PCA). The solvent polarity scale was established according to solvent dielectric constants (ɛ). Color variation (ΔE) was used to determine the presence of carotenoids, with the highest ΔE obtained using low-polarity solvents (hexane and ethyl acetate).
View Article and Find Full Text PDFUnlabelled: Coxsackievirus B3 (CVB3) is a non-enveloped picornavirus that can cause systemic inflammatory diseases including myocarditis, pericarditis, pancreatitis, and meningoencephalitis. We have previously reported that following infection, CVB3 localizes to mitochondria, inducing mitochondrial fission and mitophagy, while inhibiting lysosomal degradation by blocking autophagosome-lysosome fusion. This results in the release of virus-laden mitophagosomes from the host cell as infectious extracellular vesicles (EVs) which allow non-lytic viral egress.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2024
Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, China.
Biomed Res
November 2024
Department of Basic Veterinary Science, Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan.
Transient receptor potential vanilloid 1 (TRPV1) is primarily expressed in sensory neurons and functions as a nociceptive channel. TRPV1 is activated by capsaicin, acidic pH, and noxious heat. Compounds inhibiting TRPV1 have been explored to develop analgesic drugs.
View Article and Find Full Text PDFEur J Med Chem
January 2025
University of Catania, Dipartimento di Scienze del Farmaco e della Salute, Viale A. Doria 6, 95125, Catania, Italy. Electronic address:
The design and synthesis of a series of piperidine and piperazine-based derivatives as selective sigma receptor (SR) ligands associated with analgesic activity, are the focus of this work. In this study, affinities at S1R and S2R were measured, and molecular modeling studies were performed to investigate the binding pose features. The most promising compounds were subjected to in vitro toxicity testing and subsequently screened for in vivo analgesic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!