Adding Function to Protein Scaffolds.

Methods Mol Biol

School of Biological Sciences, The University of Auckland, Auckland, New Zealand.

Published: January 2021

Biological systems often outperform artificial ones in ordering, assembly, and diversity of structure at the nanoscale. Proteins are particularly remarkable in this context. Through oligomerization, protein monomers assemble on multiple length scales, into larger and more complex structures such as viral capsids, filaments, and regulatory complexes. It is this structural diversity that makes proteins attractive candidates for use as functionalizable scaffolds. Well-established protein structure databases such as the protein data bank (PDB) allow researchers to search for a structure that fits their requirements, allowing them access to shapes and assembly mechanisms that would otherwise be difficult to achieve. Then, by employing functionalization techniques to conjugate artificial or biological molecules to their protein scaffold of choice, researchers can access chemistries beyond the limits of the 20 commonly occurring natural amino acids. Additionally, proteins, with a few exceptions, operate at physiological pH and temperature, making them ideal for medical applications and/or low-cost manufacture. Additionally, proteins sourced from extremophiles such as Thermus aquaticus (a bacterial species sourced from hot springs) display stability across a wide range of temperatures, expanding the scope for scaffold selection. This chapter will cover some of the common methods of protein functionalization as well as some specific examples of popular functionalization methods reported in the literature. It will then present three case studies showing examples of how functionalization and imaging of proteins and protein-based structures can be achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9869-2_8DOI Listing

Publication Analysis

Top Keywords

additionally proteins
8
protein
6
proteins
5
adding function
4
function protein
4
protein scaffolds
4
scaffolds biological
4
biological systems
4
systems outperform
4
outperform artificial
4

Similar Publications

Quantitative Proteomics Identifies Profilin-1 as a Pseudouridine-Binding Protein.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Riverside, California 92521-0403, United States.

Pseudouridine (Ψ) is the most abundant RNA modification in nature; however, not much is known about the biological functions of this modified nucleoside. Employing an unbiased quantitative proteomics method, we identified multiple candidate reader proteins of Ψ in RNA, including a cytoskeletal protein profilin-1 (PFN1). We demonstrated that PFN1 binds directly and selectively to Ψ-containing RNA.

View Article and Find Full Text PDF

Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.

View Article and Find Full Text PDF

Shuanghuanglian (SHL) and its primary constituents have demonstrated protective effects against allergenic diseases. This review examines the anaphylactic and anti-allergenic activities of SHL and its constituents. We also discuss potential avenues for future research, particularly regarding the expansion of the clinical applications of SHL formulations (oral or nebulized) for the treatment of allergenic disorders.

View Article and Find Full Text PDF

Bioinformatics Analysis Reveals Microrchidia Family Genes as the Prognostic and Therapeutic Markers for Colorectal Cancer.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.

Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).

Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.

View Article and Find Full Text PDF

Unlocking Platelet Mechanisms through Multi-Omics Integration: A Brief Review.

Curr Cardiol Rev

January 2025

Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation.

Platelets, tiny cell fragments measuring 2-4 μm in diameter without a nucleus, play a crucial role in blood clotting and maintaining vascular integrity. Abnormalities in platelets, whether genetic or acquired, are linked to bleeding disorders, increased risk of blood clots, and cardiovascular diseases. Advanced proteomic techniques offer profound insights into the roles of platelets in hemostasis and their involvement in processes such as inflammation, metastasis, and thrombosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!