Hepatocellular carcinoma (HCC) has a poor treatment prognosis and high mortality worldwide. Understanding the molecular mechanism underlying HCC development would benefit the identification of diagnostic biomarkers and the improvement of the treatment strategies. The expression of carboxypeptidase A6 (CPA6) has been reported in epilepsy and febrile seizures rather than in any type of cancers. However, the function of CPA6 expression in HCC is not yet understood. In this study, we aimed to investigate the clinicopathological significance of the expression of CPA6 in HCC and the underlying mechanisms. We observed that the expression of the CPA6 protein was increased significantly in HCC tissues than in paracancerous tissues. To explore its function in HCC, both gain- and loss-of-function studies demonstrated that CPA6 played a vital role in promoting HCC growth and metastasis. When knocking down CPA6 with shRNA, HCC cell proliferation and migration could be suppressed. Meanwhile, CPA6 overexpression could promote proliferation and migration of HLF cells. Moreover, CPA6 could activate AKT serine/threonine kinase (AKT) signaling pathway as confirmed by Western blotting. In conclusion, our study revealed that CPA6 could promote HCC cell proliferation and migration via AKT-mediated signaling pathway. These findings suggest that CPA6 is a promising diagnostic biomarker and therapeutic target to improve the prognosis of HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-019-2098-zDOI Listing

Publication Analysis

Top Keywords

proliferation migration
16
signaling pathway
12
hcc
10
cpa6
10
hepatocellular carcinoma
8
akt signaling
8
expression cpa6
8
hcc cell
8
cell proliferation
8
carboxypeptidase promotes
4

Similar Publications

Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.

Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.

View Article and Find Full Text PDF

Regulatory role of lnc-MAP3K13-3:1 on miR-6894-3p and SHROOM2 in modulating cellular dynamics in hepatocellular carcinoma.

BMC Cancer

January 2025

Jiangxi Provincial Key Laboratory of Child Development and Genetics, Jiangxi Provincial Children's Hospital, No. 122 of YangMing Road, DongHu District, NanChang, 330006, China.

Background: Hepatocellular carcinoma (HCC) is a prevalent primary liver malignancy and a leading cause of cancer-related mortality worldwide. Despite advancements in therapeutic strategies, the 5-year survival rate for individuals undergoing curative resection remains between 10% and 15%. Consequently, identifying molecular targets that specifically inhibit the proliferation and metastasis of HCC cells is critical for improving treatment outcomes.

View Article and Find Full Text PDF

Protein citrullination modification plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA), and anti-citrullinated protein antibodies (ACPAs) are extensively employed for clinical diagnosis of RA. However, there remains limited understanding regarding specific citrullinated proteins and their implications in the progression of RA. In this study, we screen and verify insulin-like growth factor-2 mRNA binding protein 1 (IGF2BP1) as a novel citrullinated protein with significantly elevated citrullinated level in RA.

View Article and Find Full Text PDF

MicroRNA (miRNA) dysregulation has been identified in several carcinomas, including non-small cell lung cancer (NSCLC), and is known to play a role in the development and progression of this disease. We initially conducted a miRNA microarray analysis, which revealed that the MNK inhibitor CGP57380 increased the expression of miR-150-3p. A similar analysis was performed using data from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!