Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sexual signals serve as an honest indicator of individual quality, reflecting either developmental and/or maintenance costs. A possible underlying physiological mechanism is oxidative stress, which could mediate energy trade-offs between sexual signals and other quality traits. In ectotherms, thermal performance acts as a key indicator of individual quality and influence signal intensity. We investigated how oxidative state is reflected in visual signals of lizards from different thermal habitats. According to our hypothesis, efficient thermoregulation requires different strategies in different thermal environments. In a habitat with predictable temperature changes, animals are less exposed to suboptimal temperature ranges and selection will, therefore, be stronger on the maximum oxidative damage at optimal body temperature. Contrarily, in a habitat with rather stochastic thermal shifts, individuals are often constricted by suboptimal thermal conditions, and oxidative damage can be limiting on a wide temperature range. We used Iberolacerta cyreni and Psammodromus algirus inhabiting stochastic and predictable thermal environments respectively. We examined two aspects of oxidative stress: the level of reactive oxygen metabolites at the preferred temperature (maximal ROM) and the temperature range in which animals produce at least 80% of the maximum level of reactive oxygen metabolites (effective ROM range). In I. cyreni, we found that duller coloration was related to a wider effective ROM range, while expression of coloration in P. algirus was negatively correlated with the maximal ROM. Our results suggest that different thermal constraints affect different aspects of oxidative damage which can indicate individual quality and are, therefore, represented in sexual ornaments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00114-019-1649-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!