Fluid manipulation in microfluidic systems is often controlled by active pumps that are relatively large in size and require external power sources which limit their portability and use in limited-resource settings. In this work, portable, detachable, low-cost, and power-free paper pumps with engineered capillary tubes (referred to as "grooves") that can passively drive viscous fluids based on capillary action are presented. The proposed grooved paper pumps are capable of generating a controllable flow of complex biofluids within microfluidic devices with minimal user intervention and no external power sources. The pumping performance of grooved paper pumps in this study is tested with undiluted, unseparated whole blood samples - demonstrating successful transport of approximately 150 μL of blood within an average time of 5 minutes to 50 minutes, depending on their design parameters. Results for the flow rate of grooved paper pumps indicate that the number of grooves created within the porous paper determines the profile of the generated flow rate. The experimental data also show that as the number of grooves in the pumps is increased, the flow rate approaches a constant value for the entire duration of pumping before the pump becomes saturated. The promising performance of grooved paper pumps with whole blood offers potential applications of these small, disposable pumps in point-of-care diagnostics in which time is crucial and access to external power is limited.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9lc00822eDOI Listing

Publication Analysis

Top Keywords

paper pumps
20
grooved paper
16
external power
12
flow rate
12
pumps
9
microfluidic devices
8
power sources
8
performance grooved
8
number grooves
8
paper
6

Similar Publications

In the context of global efforts toward energy transition and carbon neutrality, thermal integrated pumped thermal energy storage (TIPTES) systems, especially those utilizing low-grade heat sources, have garnered significant attention due to their large capacity, flexibility, and environmental advantages. This paper explores a TIPTES system that harnesses industrial waste heat as a heat source. The system's heat pump (HP) subcycle and Organic Rankine Cycle (ORC) subcycle are equipped with regenerators to optimize system configuration and enhance efficiency.

View Article and Find Full Text PDF

Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity.

Amino Acids

January 2025

Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece.

Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity.

View Article and Find Full Text PDF

Comparative study of the variability of the phytoplankton biomass in two upwelling zones of the western Arabian Sea from 2003 to 2020.

Mar Pollut Bull

January 2025

National Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China. Electronic address:

This study investigates the monthly and interannual variations in chlorophyll-a (Chl-a) concentrations in the Oman and Somalia upwelling zones using satellite data from 2003 to 2020. Bivariate Wavelet Coherence (BWC) and Multiple Wavelet Coherence (MWC) analyses were applied to identify the key factors influencing Chl-a concentration changes. The results show that Ekman pumping and Ekman transport induced by the southwest monsoon are crucial for phytoplankton blooms along the coast and offshore in both upwelling zones.

View Article and Find Full Text PDF

Chlorination-induced spread of antibiotic resistance genes in drinking water systems.

Water Res

January 2025

School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia. Electronic address:

Chlorine, the most widely utilized disinfectant for drinking water globally, has recently been implicated in facilitating the spread of antibiotic resistance genes (ARGs), raising concerns about its underestimated environmental and ecological risks. However, given the current fragmented research focus and results, a comprehensive understanding of the potential mechanisms and influencing factors behind chlorination-promoted ARGs transmission in drinking water systems is crucial. This work is the first to systematically review the variations in abundance, transmission mechanisms, influencing factors, and mitigation strategies related to ARGs during the chlorination process.

View Article and Find Full Text PDF

Sea spray aerosol (SSA) is a complex mixture of natural substances that can be inhaled by coastal residents. Previous studies have suggested that SSA may have positive effects on human health, but the molecular mechanisms and the factors influencing these effects are poorly understood. In this study, we exposed human bronchial epithelial cells (BEAS-2B) to natural SSA samples, collected monthly using quartz microfiber filters mounted on tripods within 15 m of the waterline, with air drawn through pumps, throughout a one-year period at the Ostend coast, Belgium, and measured cellular gene expression changes using RNA sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!