Bark beetles from genus promote ecological succession and nutrient cycling in coniferous forests. However, they can trigger outbreaks leading to important economic losses in the forest industry. Conifers have evolved resistance mechanisms that can be toxic to insects but at the same time, bark beetles are capable of overcoming tree barriers and colonize these habitats. In this sense, symbiont yeasts present in the gut of bark beetles have been suggested to play a role in the detoxification process of tree defensive chemicals. In the present study, genes related to this process were identified and their response to a terpene highly toxic to bark beetles and their symbionts was analyzed in the yeast. The genome and transcriptome of (ChDrAdgY46) isolated from the gut of were presented. Genome analysis identified 5752 protein-coding genes and diverse gene families associated with the detoxification process. The most abundant belonged to the Aldo-Keto Reductase Superfamily, ATP-binding cassette Superfamily, and the Major Facilitator Superfamily transporters. The transcriptome analysis of non-α-pinene stimulated and α-pinene stimulated yeasts showed a significant expression of genes belonging to these families. The activities demonstrated by the genes identified as Aryl-alcohol dehydrogenase and ABC transporter under (+)-α-pinene suggest that they are responsible, that is a dominant symbiont that resists high amounts of monoterpenes inside the gut of bark beetles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777644PMC
http://dx.doi.org/10.3389/fmicb.2019.02180DOI Listing

Publication Analysis

Top Keywords

bark beetles
20
gut bark
12
detoxification process
12
isolated gut
8
genome transcriptome
8
bark
6
beetles
5
overview genes
4
genes symbiont
4
symbiont yeast
4

Similar Publications

Eruptive Insect Outbreaks from Endemic Populations Under Climate Change.

Bull Math Biol

December 2024

Department of Biology, University of Victoria, Victoria, BC, Canada.

Insects, especially forest pests, are frequently characterized by eruptive dynamics. These types of species can stay at low, endemic population densities for extended periods of time before erupting in large-scale outbreaks. We here present a mechanistic model of these dynamics for mountain pine beetle.

View Article and Find Full Text PDF

Background: Acanthacoccus lagerstroemiae (crape myrtle bark scale, CMBS) is an exotic scale insect that feeds on the sap of crape myrtle trees. Heavy infestations of CMBS reduce flowering and honeydew promotes sooty mold growth on the leaves and branches, reducing the aesthetic value of crape myrtle trees in urban landscapes. Lady beetles (Coleoptera: Coccinellidae) are generalist predators that feed on CMBS.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates polymorphic genomic inversions in the spruce bark beetle (Ips typographus), a significant forest pest in Europe, examining their prevalence and role in local adaptation.
  • Researchers analyzed 240 individuals across 18 populations, identifying 27 polymorphic inversions that account for ~28% of the genome, revealing a complex genomic landscape influenced by recombination and overlap.
  • The findings suggest that these inversions may be maintained by neutral processes rather than traditional evolutionary mechanisms, and they are notably enriched in genes related to odorant receptors, highlighting their potential impact on traits linked to ecological interactions.
View Article and Find Full Text PDF

also known as southern pine beetle (SPB), is the most damaging insect forest pest in the southeastern United States. Genomic data are important to provide information on pest biology and to identify molecular targets to develop improved pest management approaches. Here, we produced a chromosome-level genome assembly of SPB using long-read sequencing data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!