Muscle regeneration is a complex process governed by the interplay between several muscle-resident mononuclear cell populations. Following acute or chronic damage these cell populations are activated, communicate via cell-cell interactions and/or paracrine signals, influencing fate decisions via the activation or repression of internal signaling cascades. These are highly dynamic processes, occurring with distinct temporal and spatial kinetics. The main challenge toward a system level description of the muscle regeneration process is the integration of this plethora of inter- and intra-cellular interactions. We integrated the information on muscle regeneration in a web portal. The scientific content annotated in this portal is organized into two information layers representing relationships between different cell types and intracellular signaling-interactions, respectively. The annotation of the pathways governing the response of each cell type to a variety of stimuli/perturbations occurring during muscle regeneration takes advantage of the information stored in the SIGNOR database. Additional curation efforts have been carried out to increase the coverage of molecular interactions underlying muscle regeneration and to annotate cell-cell interactions. To facilitate the access to information on cell and molecular interactions in the context of muscle regeneration, we have developed Myo-REG, a web portal that captures and integrates published information on skeletal muscle regeneration. The muscle-centered resource we provide is one of a kind in the myology field. A friendly interface allows users to explore, approximately 100 cell interactions or to analyze intracellular pathways related to muscle regeneration. Finally, we discuss how data can be extracted from this portal to support modeling experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776608 | PMC |
http://dx.doi.org/10.3389/fphys.2019.01216 | DOI Listing |
Curr Cardiol Rep
January 2025
Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
Purpose Of The Review: This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart.
Recent Findings: Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades.
J Pediatr Ophthalmol Strabismus
January 2025
Purpose: To investigate the effects of recession or re-section surgery on PAX 7 positive satellite cells of the extraocular muscle (EOM) in rabbits.
Methods: A total of 20 rabbits (40 eyes) were included in this study. The superior rectus muscle of the right eye was either recessed or resected.
Front Cell Neurosci
January 2025
Laboratório de Neurodegeneração e Reparo - Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil.
Background: Following transection, nerve repair using the polylactic acid (PLA) conduit is an effective option. In addition, inosine treatment has shown potential to promote nerve regeneration. Therefore, this study aimed to investigate the regenerative potential of inosine after nerve transection and polylactic acid conduit repair.
View Article and Find Full Text PDFERJ Open Res
January 2025
Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle upon Tyne, UK.
Background: In response to exercise-based pulmonary rehabilitation (PR), the type of muscle fibre remodelling differs between COPD patients with peripheral muscle wasting (atrophic patients with COPD) and those without wasting (nonatrophic patients with COPD). Extracellular matrix (ECM) proteins are major constituents of the cell micro-environment steering cell behaviour and regeneration. We investigated whether the composition of ECM in atrophic compared to nonatrophic patients with COPD differs in response to PR.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, Netherlands.
Muscle repair and regeneration are complex processes. In Duchenne muscular dystrophy (DMD), these processes are disrupted by the loss of functional dystrophin, a key part of the transmembrane dystrophin-associated glycoprotein complex that stabilizes myofibers, indirectly leading to progressive muscle wasting, subsequent loss of ambulation, respiratory and cardiac insufficiency, and premature death. As part of the DMD pathology, histone deacetylase (HDAC) activity is constitutively increased, leading to epigenetic changes and inhibition of muscle regeneration factors, chronic inflammation, fibrosis, and adipogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!