The initial steps of HIV replication in host cells prime the virus for passage through the nuclear pore and drive the establishment of a productive and irreparable infection. The timely release of the viral genome from the capsid-referred to as uncoating-is emerging as a critical parameter for nuclear import, but the triggers and mechanisms that orchestrate these steps are unknown. Here, we identify β-karyopherin Transportin-1 (TRN-1) as a cellular co-factor of HIV-1 infection, which binds to incoming capsids, triggers their uncoating and promotes viral nuclear import. Depletion of TRN-1, which we characterized by mass spectrometry, significantly reduced the early steps of HIV-1 infection in target cells, including primary CD4+ T cells. TRN-1 bound directly to capsid nanotubes and induced dramatic structural damage, indicating that TRN-1 is necessary and sufficient for uncoating in vitro. Glycine 89 on the capsid protein, which is positioned within a nuclear localization signal in the cyclophilin A-binding loop, is critical for engaging the hydrophobic pocket of TRN-1 at position W730. In addition, TRN-1 promotes the efficient nuclear import of both viral DNA and capsid protein. Our study suggests that TRN-1 mediates the timely release of the HIV-1 genome from the capsid protein shell and efficient viral nuclear import.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41564-019-0575-6 | DOI Listing |
Exp Neurobiol
December 2024
Department of Anatomy and Cell Biology, Dong-A University, College of Medicine, Busan 49201, Korea.
Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND.
View Article and Find Full Text PDFRNA
January 2025
MRC University of Glasgow Centre for Virus Research, University of Glasgow.
Cytoplasmic viruses interact intricately with the nuclear pore complex and nuclear import/export machineries, affecting nuclear-cytoplasmic trafficking. This can lead to the selective accumulation of nuclear RNA-binding proteins (RBPs) in the cytoplasm. Pioneering research has shown that relocated RBPs serve as an intrinsic defence mechanism against viruses, which involves RNA export, splicing and nucleolar factors.
View Article and Find Full Text PDFThe nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of ( ) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
In the flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 ( Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.
How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!