Seismic and electromagnetic methods are fundamental to Solid Earth research and subsurface exploration. Acquisition cost reduction is making dense 3D application of these methods accessible to a broad range of geo-scientists. However, the challenge of extracting geological meaning remains. We develop the concept of "textural domaining" for 3D seismic reflectivity data. Dip-steered seismic texture attributes are combined with unsupervised learning to generate sets of volume rendered images accompanied by a seismic texture reference diagram. These methods have the potential to reveal geological and geotechnical properties that would otherwise remain hidden. Analysis of seismic texture presents particular value in hard-rock settings where changes in velocity may be negligible across rock volumes exhibiting significant changes in rock mass texture. We demonstrate application and value of textural domaining with three industry-scale field examples. The first example links seismic texture to rock type along a 400 km long transect through central Australia. The second and third examples partition dense 3D seismic data based on texture for complex hard rock terrains in Nevada, USA and Kevitsa, Finland. Finally, we demonstrate application of domaining within texture guided cooperative inversion of 3D seismic reflectivity and magnetotelluric data to provide new perspectives on Solid Earth geology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6791834PMC
http://dx.doi.org/10.1038/s41598-019-50109-zDOI Listing

Publication Analysis

Top Keywords

seismic texture
20
solid earth
12
seismic
9
perspectives solid
8
earth geology
8
texture
8
cooperative inversion
8
inversion seismic
8
seismic reflectivity
8
demonstrate application
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!