Purpose: Intravoxel incoherent motion (IVIM) analysis has attracted the interest of the clinical community due to its close relationship with microperfusion. Nevertheless, there is no clear reference protocol for its implementation; one of the questions being which b-value distribution to use. This study aimed to stress the importance of the sampling scheme and to show that an optimized b-value distribution decreases the variance associated with IVIM parameters in the brain with respect to a regular distribution in healthy volunteers.
Methods: Ten volunteers were included in this study; images were acquired on a 1.5T MR scanner. Two distributions of 16 b-values were used: one considered 'regular' due to its close association with that used in other studies, and the other considered 'optimized' according to previous studies. IVIM parameters were adjusted according to the bi-exponential model, using two-step method. Analysis was undertaken in ROI defined using in the Automated Anatomical Labeling atlas, and parameters distributions were compared in a total of 832 ROI.
Results: Maps with fewer speckles were obtained with the 'optimized' distribution. Coefficients of variation did not change significantly for the estimation of the diffusion coefficient D but decreased by approximately 39% for the pseudo-diffusion coefficient estimation and by 21% for the perfusion fraction. Distributions of adjusted parameters were found significantly different in 50% of the cases for the perfusion fraction, in 80% of the cases for the pseudo-diffusion coefficient and 17% of the cases for the diffusion coefficient. Observations across brain areas show that the range of average values for IVIM parameters is smaller in the 'optimized' case.
Conclusion: Using an optimized distribution, data are sampled in a way that the IVIM signal decay is better described and less variance is obtained in the fitted parameters. The increased precision gained could help to detect small variations in IVIM parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553810 | PMC |
http://dx.doi.org/10.2463/mrms.mp.2019-0061 | DOI Listing |
Med Image Anal
December 2024
Faculty of Biomedical Engineering, Technion, Haifa, Israel. Electronic address:
Quantitative analysis of pseudo-diffusion in diffusion-weighted magnetic resonance imaging (DWI) data shows potential for assessing fetal lung maturation and generating valuable imaging biomarkers. Yet, the clinical utility of DWI data is hindered by unavoidable fetal motion during acquisition. We present IVIM-morph, a self-supervised deep neural network model for motion-corrected quantitative analysis of DWI data using the Intra-voxel Incoherent Motion (IVIM) model.
View Article and Find Full Text PDFMed Image Anal
November 2024
Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
In medical image analysis, the utilization of biophysical models for signal analysis offers valuable insights into the underlying tissue types and microstructural processes. In diffusion-weighted magnetic resonance imaging (DWI), a major challenge lies in accurately estimating model parameters from the acquired data due to the inherently low signal-to-noise ratio (SNR) of the signal measurements and the complexity of solving the ill-posed inverse problem. Conventional model fitting approaches treat individual voxels as independent.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
This study aimed to establish and validate a multiparameter prediction model for Ki67 expression in hepatocellular carcinoma (HCC) patients while also exploring its potential to predict the one-year recurrence risk. The clinical, pathological, and imaging data of 83 patients with HCC confirmed by postoperative pathology were analyzed, and the patients were randomly divided into a training set (n = 58) and a validation set (n = 25) at a ratio of 7:3. All patients underwent a magnetic resonance imaging (MRI) scan that included multi-b value diffusion-weighted scanning before surgery, and quantitative parameters were obtained via intravoxel incoherent motion (IVIM) and diffusion kurtosis (DKI) models.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
December 2024
From the Department of Diagnostic Medicine, Dell Medical School at The University of Texas at Austin, Austin, TX, USA (C.Y.H.), Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA (N.S., G.A., Q.W., P.C., M.A., J.G.P., B.R.G., P.R.T., G.D.H.), Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA (E.C., P.R.T., S.A.P.), Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA (P.R.T., S.A.P.), and the Department of Radiology at Texas Children's Hospital, Houston, TX, USA (S.F.K.).
Background And Purpose: There are multiple MRI perfusion techniques, with limited available literature comparing these techniques in the grading of pediatric brain tumors. For efficiency and limiting scan time, ideally only one MRI perfusion technique can be used in initial imaging. We compared DSC, DCE, and IVIM along with ADC from DWI for differentiating high versus low grade pediatric brain tumors.
View Article and Find Full Text PDFMed Phys
December 2024
Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China.
Background: Due to the low signal-to-noise ratio (SNR) and the limited number of b-values, precise parameter estimation of intravoxel incoherent motion (IVIM) imaging remains an open issue to date, especially for brain imaging where the relatively small difference between D and D easily leads to outliers and obvious graininess in estimated results.
Purpose: To propose a synthetic data driven supervised learning method (SDD-IVIM) for improving precision and noise robustness in IVIM parameter estimation without relying on real-world data for neural network training.
Methods: On account of the absence of standard IVIM parametric maps from real-world data, a novel model-based method for generating synthetic human brain IVIM data was introduced.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!