Infection with Herpes Simplex Viruses (HSVs) represents a significant health burden worldwide with HSV-1 and HSV-2 causing genital disease and HSV-2 contributing to human immunodeficiency virus acquisition. Despite great need, there is currently no licensed vaccine against HSV. In this report, we evaluated the protective efficacy of a vaccine containing highly purified, inactivated HSV-2 particles (with and without additional recombinant glycoprotein D) formulated with a monophosphoryl lipid A/Alhydrogel adjuvant in a guinea pig HSV genital model. The key results from 3 independent studies were: (1) vaccination consistently provided significant 3-3.5 Log10 reductions in vaginal HSV-2 titers on day 2 postchallenge; (2) following homologous or heterologous challenge with two U.S. isolates, all vaccine groups showed complete protection against lesion formation, significant 3 Log10 reductions in day 2 virus shedding, enhanced virus clearance, significant reductions in HSV-2 DNA within ganglia, and no detectable shedding (<2 PFU) or latent viral DNA in some immunized animals; (3) following challenge with a third heterologous strain, vaccination provided complete protection against primary and recurrent lesions, significant reductions in primary virus shedding, a 50% reduction in recurrent shedding days, and undetectable latent virus in the ganglia and spinal cords of most animals; and (4) adding glycoprotein D provided no enhanced protection relative to that elicited by the inactivated HSV-2 particles alone. Together, these data provide strong support for further development of this exceedingly protective and highly feasible vaccine candidate for human trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2019.09.090DOI Listing

Publication Analysis

Top Keywords

vaccine highly
8
highly purified
8
homologous heterologous
8
herpes simplex
8
log10 reductions
8
virus
5
hsv-2
5
vaccine
4
purified virus
4
virus particles
4

Similar Publications

Unlabelled: Respiratory and encephalitic virus infections represent a significant risk to public health globally. Detailed investigations of immunological responses and disease outcomes during sequential virus infections are rare. Here, we define the impact of influenza virus infection on a subsequent virus encephalitis.

View Article and Find Full Text PDF

The meat processing industry was significantly impacted by the COVID-19 pandemic. Deemed essential, the meat processing workforce faced the risk of exposure to the SARS-CoV-2 virus. Along with other essential workforces, meat processing workers were prioritized in the national approach to receive COVID-19 vaccines by the Centers for Disease Control and Prevention Advisory Committee on Immunization Practices.

View Article and Find Full Text PDF

Japanese encephalitis (JE) is a mosquito-borne infectious disease caused by the Japanese encephalitis virus (JEV). There is currently no effective treatment for JE, and all approved Japanese encephalitis vaccine products originated from the JEV genotype III (GIII). In recent years, JEV genotype I (GI) has gradually replaced GIII as the dominant genotype, and a new symptom of peripheral nerve injury (PNI) caused by JEV NX1889 strain has attracted wide attention, in which JEV envelope (E) protein may be involved in early peripheral nerve injury.

View Article and Find Full Text PDF

Rapid and sensitive detection of virus-related antigens and antibodies is crucial for controlling sudden seasonal epidemics and monitoring neutralizing antibody levels after vaccination. However, conventional detection methods still face challenges related to compatibility with rapid, highly sensitive, and compact detection apparatus. In this work, we developed a Si nanowire (SiNW)-based field-effect biosensor by precisely controlling the process conditions to achieve the required electrical properties via complementary metal-oxide-semiconductor (CMOS)-compatible nanofabrication processes.

View Article and Find Full Text PDF

Proteolysis-targeting influenza vaccine strains induce broad-spectrum immunity and in vivo protection.

Nat Microbiol

January 2025

State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!