Platelet consumption and hyperreactivity coexist in experimental traumatic hemorrhagic model.

Platelets

Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden.

Published: August 2020

Introduction: Platelets are critical for hemostasis, and a low platelet count predicts mortality in trauma. The role of platelet dysfunction in severe traumatic hemorrhage and coagulopathy needs to be further defined. The aim of this study was to evaluate the platelet function in a new model of experimental traumatic hemorrhage.

Material And Methods: New Zealand white rabbits (n = 10) were subjected to tracheostomy and trauma laparotomy, and then bilateral femur fractures with 40% hemorrhage of their estimated blood volume. Arterial blood gases, standard coagulation tests, mean platelet volume, platelet aggregation using impedance aggregometry with agonist collagen, arachidonic acid (ASPI), and adenosine diphosphate (ADP), rotational thromboelastometry, and fibrinogen binding of platelets were analyzed using flow cytometry.

Results: After traumatic hemorrhage, there was a significant physiological response with a rise in lactate ( < .001) and a decrease in base excess ( < .001) and temperature ( < .001). Platelet count decreased from a mean of 244x10/L to 94 x10/L ( = .004) and the mean platelet volume increased from 5.1fL to 6.1fL ( = .002). Impedance aggregometry with the agonist collagen, ASPI, and ADP was all significantly decreased after hemorrhage ( = .007). However, there was an increased fibrinogen binding of ADP-activated platelets after traumatic hemorrhage analyzed by flow cytometry ( < .05).

Conclusions: This traumatic hemorrhage model presents two parallel pathophysiological responses of platelets; platelet consumption as evidenced by a significant decrease in platelet count and aggregation, and platelet hyperreactivity as shown by a higher mean platelet volume and enhanced platelet fibrinogen binding. Further studies are needed to characterize these different aspects of platelet function in severe traumatic hemorrhage.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09537104.2019.1678120DOI Listing

Publication Analysis

Top Keywords

traumatic hemorrhage
20
platelet
14
platelet count
12
platelet volume
12
fibrinogen binding
12
platelet consumption
8
experimental traumatic
8
severe traumatic
8
platelet function
8
impedance aggregometry
8

Similar Publications

Molecular biomarkers associated with TBI outcome in individuals of Black racial identity or African ancestry: a narrative review.

World Neurosurg

December 2024

College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Global Neurosurgery Laboratory, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Department of Neurology, One Brooklyn Health/Brookdale University Hospital and Medical Center, Brooklyn, New York, USA; Department of Neurology; SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Institute for Genomics in Health, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Division of Neurosurgery, Department of Surgery, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Department of Community Health Sciences, School of Public Health, SUNY Downstate Health Sciences University; Department of Surgery, One Brooklyn Health/Brookdale University Hospital and Medical Center, Brooklyn, New York, USA. Electronic address:

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide and a major global health concern. In the United States (US), individuals of Black or African American racial identity experience disproportionately higher rates of TBI and suffer from worse post-injury outcomes. Contemporary research agendas have largely overlooked or excluded Black populations, resulting in the continued marginalization of Black patient populations in TBI studies, thereby limiting the generalizability of ongoing research to patients in the US and around the world.

View Article and Find Full Text PDF

Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing.

View Article and Find Full Text PDF

Background: Aneurysmal subarachnoid hemorrhage (aSAH) carries a high economic cost and clinical morbidity in the United States. Beyond prolonged admissions and poor post-injury functional status, there is an additional cost of chronic shunt-dependent hydrocephalus for many aSAH patients. Adjuvant lumbar drain (LD) placement has been hypothesized to promote clearance of subarachnoid blood from the cisternal space, with an ultimate effect of decreasing shunt placement rates.

View Article and Find Full Text PDF

The Historical and Clinical Foundations of the Modern Neuroscience Intensive Care Unit.

World Neurosurg

December 2024

Clinical and Translational Neuroscience Unit, Department of Neurology and Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA. Electronic address:

The subspecialty of neurocritical care has grown significantly over the past 40 years along with advancements in the medical and surgical management of neurological emergencies. The modern neuroscience intensive care unit (neuro-ICU) is grounded in close collaboration between neurointensivists and neurosurgeons in the management of patients with such conditions as ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hemorrhage, subdural hematomas, and traumatic brain injury. Neuro-ICUs are also capable of specialized monitoring such as serial neurological examinations by trained neuro-ICU nurses; invasive monitoring of intracranial pressure, cerebral oxygenation, and cerebral hemodynamics; cerebral microdialysis; and noninvasive monitoring, including the use of pupillometry, ultrasound monitoring of optic nerve sheath diameters, transcranial Doppler ultrasonography, near-infrared spectroscopy, and continuous electroencephalography.

View Article and Find Full Text PDF

Current Challenges in Neurocritical Care: A Narrative Review.

World Neurosurg

December 2024

Department of Neurology, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA. Electronic address:

Neurocritical care as a field aims to treat patients who are neurologically critically ill due to a variety of pathologies. As a recently developed subspecialty, the field faces challenges, several of which are outlined in this review. The authors discuss aneurysmal subarachnoid hemorrhage, status epilepticus, and traumatic brain injury as specific disease processes with opportunities for growth in diagnosis, management, and treatment, as well as disorders of consciousness that can arise as a result of many neurological injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!