The mouse pathogen Citrobacter rodentium is used to model infections with enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC). Pathogenesis is commonly modelled in mice developing mild disease (e.g., C57BL/6). However, little is known about host responses in mice exhibiting severe colitis (e.g., C3H/HeN), which arguably provide a more clinically relevant model for human paediatric enteric infection. Infection of C3H/HeN mice with C. rodentium results in rapid colonic colonisation, coinciding with induction of key inflammatory signatures and colonic crypt hyperplasia. Infection also induces dramatic changes to bioenergetics in intestinal epithelial cells, with transition from oxidative phosphorylation (OXPHOS) to aerobic glycolysis and higher abundance of SGLT4, LDHA, and MCT4. Concomitantly, mitochondrial proteins involved in the TCA cycle and OXPHOS were in lower abundance. Similar to observations in C57BL/6 mice, we detected simultaneous activation of cholesterol biogenesis, import, and efflux. Distinctly, however, the pattern recognition receptors NLRP3 and ALPK1 were specifically induced in C3H/HeN. Using cell-based assays revealed that C. rodentium activates the ALPK1/TIFA axis, which is dependent on the ADP-heptose biosynthesis pathway but independent of the Type III secretion system. This study reveals for the first time the unfolding intestinal epithelial cells' responses during severe infectious colitis, which resemble EPEC human infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7003488 | PMC |
http://dx.doi.org/10.1111/cmi.13126 | DOI Listing |
ISME J
January 2025
Department of Biological Sciences, University of Alberta, Canada.
In this study, we identify and characterize a novel phage-inducible chromosomal island found in commensal Escherichia coli MP1. This novel element, EcCIMP1, is induced and mobilized by the temperate helper phage vB_EcoP_Kapi1. EcCIMP1 contributes to superinfection immunity against its helper phage, impacting bacterial competition outcomes.
View Article and Find Full Text PDFGut Pathog
December 2024
Department of Microbiology and Immunology, Galveston, TX, USA.
Background: Enterohemorrhagic Escherichia coli (EHEC), a group of enteric pathogenic bacteria that is a major cause of human diarrheal disease, must interact with the diverse intestinal microbiome during colonization and subsequently overcome the environmental challenges to survive and cause disease. While this relationship, and how the microbiome modulates infection of EHEC, has been studied, it is less understood how the microbiome is impacted during treatment for an EHEC infection. One area that is notably lacking in knowledge is how vaccination can impact the intestinal microbiome composition, and therefore, influence vaccine efficacy.
View Article and Find Full Text PDFGut Microbes
December 2024
Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Enteropathogenic (EPEC) is a bacterium that causes attaching/effacing (A/E) lesions and serious diarrheal disease, a major health issue in developing countries. EPEC pathogenicity results from the effect of virulence factors and dysregulation of host responses. Polyamines, including spermidine, play a major role in intestinal homeostasis.
View Article and Find Full Text PDFFree Radic Biol Med
December 2024
Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107D Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16801, USA. Electronic address:
Reactive oxygen species (ROS) play a critical role in modulating a range of proinflammatory functions in neutrophils, as well as regulating neutrophil apoptosis and facilitating the resolution of an inflammatory response. Selenoproteins with the 21st amino acid, selenocysteine (Sec), regulate immune mechanisms through the modulation of redox homeostasis aiding in the efficient resolution of inflammation, while their role in neutrophil functions during diseases remains unclear. To study the role of selenoproteins in neutrophils during infection, we challenged the granulocyte-specific tRNA (Trsp) knockout mice (Trsp) with Citrobacter rodentium (C.
View Article and Find Full Text PDFBackground: Enterohemorrhagic (EHEC), a group of enteric pathogenic bacteria that is a major cause of human diarrheal disease, must interact with the diverse intestinal microbiome during colonization and subsequently overcome the environmental challenges to survive and cause disease. While this relationship, and how the microbiome modulates infection of EHEC, has been studied, it is less understood how the microbiome is impacted during treatment for an EHEC infection. One area that is notably lacking in knowledge is how vaccination can impact the intestinal microbiome composition, and therefore, influence vaccine efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!