A former mining site has been the subject of extensive remediation and restoration, with a significant focus on disconnecting mine spoils from groundwater and managing the quantity and quality of runoff. A remaining task is ensuring concentrations of zinc (Zn) in the stream outflow of a pit lake are reduced below water quality standards. The efficacy of multiple capping materials for decreasing Zn dissolution from sediments was conducted under natural and reasonable worst-case conditions (pH = 5.5). Capping materials included AquaBlok™, limestone, and limestone-bone char. Field exposures were conducted in limnocorrals that isolated overlying water columns above the sediment and capping treatments. Simultaneous in situ and ex situ toxicity tests were conducted using Daphnia magna, Hyalella azteca, and Chironomus dilutus. In situ caged organisms were protected from temperature shock (warm epilimnetic waters) by deploying within a Toxicity Assessment Container System (TACS). Organisms were exposed to surficial sediments, caps, and hypolimnetic overlying waters for 4 d. Ex situ testing was conducted in core tube mesocosms containing sediments and caps at similar temperatures (15-19 °C). Results demonstrated the usefulness of TACS deployment in stratified lake systems. There were no differences in responses between treatments involving sediment capping materials in both in situ and ex situ tests. The lack of differences was likely due to dissolved Zn in surface water being below the hardness-adjusted threshold effects levels (164 μg L ). This field- and laboratory-based weight-of-evidence study provided site-specific data to support the selection of an effective remedy, with reduced uncertainty compared to laboratory and chemistry-only approaches. Environ Toxicol Chem 2019;39:240-249. © 2019 SETAC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.4612DOI Listing

Publication Analysis

Top Keywords

capping materials
16
sediment capping
12
situ situ
8
sediments caps
8
situ
6
capping
5
laboratory field-based
4
field-based assessment
4
assessment effects
4
effects sediment
4

Similar Publications

This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.

View Article and Find Full Text PDF

Background: Indirect pulp treatment (IPT) is often employed in dentistry as a valuable technique for preserving dental vitality. While mineral trioxide aggregate (MTA) remains a popular choice, the need for materials with shorter setting times, lower costs, and minimized discoloration concerns has led to the exploration of alternative options.

Aim: To evaluate and compare the radiographic and clinical outcomes of gel-based MTA Kids e-MTA (Kids-e-Dental, Mumbai, India) with MTA (ProRoot MTA, Dentsply Tulsa, Johnson City, TN, USA).

View Article and Find Full Text PDF

Enhancement of mechanical properties in reactive polyurethane film via in-situ assembly of embedded cellulose nanocrystals.

Int J Biol Macromol

January 2025

Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China. Electronic address:

Comparing to the solvent-based and waterborne polyurethanes (PU), the solvent-free reactive PU (RPU) is prepared via in-situ polymerization and film-formation of isocyanate-capped prepolymers and macromolecular polyols in solvent-free system. Thus, the carbon emissions and environmental pollutions are significantly reduced. However, the rapid polymerization also challenges the well control of structure and properties, especially the ordered microstructures.

View Article and Find Full Text PDF

The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.

View Article and Find Full Text PDF

Evaluation of Biodentine® and Calcium Hydroxide in the Formation of Dentin Bridge in Deep Carious Lesions.

West Afr J Med

September 2024

.Department of Preventive Dentistry, Lagos State University, College of Medicine, Faculty of Dentistry, Ikeja, Lagos, PMB 21266, Nigeria.

Background: Indirect pulp capping is the main treatment modality for reversible pulpitis.

Objective: To evaluate the efficacy of Biodentine® and Calcium hydroxide in the formation of dentin bridge.

Materials And Methods: A double blinded, randomized clinical control trial involving 50 consenting subjects, aged 16 to 55 years with deep carious vital teeth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!