The distribution of charge density in materials dictates their chemical bonding, electronic transport, and optical and mechanical properties. Indirectly measuring the charge density of bulk materials is possible through X-ray or electron diffraction techniques by fitting their structure factors, but only if the sample is perfectly homogeneous within the area illuminated by the beam. Meanwhile, scanning tunnelling microscopy and atomic force microscopy enable us to see chemical bonds, but only on the surface. It remains a challenge to resolve charge density in nanostructures and functional materials with imperfect crystalline structures-such as those with defects, interfaces or boundaries at which new physics emerges. Here we describe the development of a real-space imaging technique that can directly map the local charge density of crystalline materials with sub-ångström resolution, using scanning transmission electron microscopy alongside an angle-resolved pixellated fast-electron detector. Using this technique, we image the interfacial charge distribution and ferroelectric polarization in a SrTiO/BiFeO heterojunction in four dimensions, and discover charge accumulation at the interface that is induced by the penetration of the polarization field of BiFeO. We validate this finding through side-by-side comparison with density functional theory calculations. Our charge-density imaging method advances electron microscopy from detecting atoms to imaging electron distributions, providing a new way of studying local bonding in crystalline solids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-019-1649-6 | DOI Listing |
The optical detection of arsenic (As) in human biological fluids and environmental water samples is presented using alpha-cyclodextrin-modified silver nanoparticles (α/CyD-AgNPs) at the trace level. This method is based on the measurement of a red shift of the LSPR band of α/CyD-AgNPs in the region of 200-800 nm. The color of α/CyD-AgNPs was changed from yellow to colorless by the addition of As(iii).
View Article and Find Full Text PDFHeliyon
December 2024
Department of Computing and Artificial Intelligence, Suzhou City University, No. 1188 Wuzhong Avenue, Wuzhong District, Suzhou, 215104, Jiangsu, China.
The dual-active-bridge series-resonant converter, offering galvanic isolation and high power density, is a viable and attractive solution for the isolated DC/DC power stage in Solid-State Transformers. Under the step load commands, the resonant tanks typically experience severe oscillations, which delay the transient response and the entry into the final steady state. To address these drawbacks, this paper proposes a dynamic trajectory prediction modulation (DTPM) method for adjusting the transient process.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
School of Physics, Henan Normal University, Xinxiang, Henan, 453007, China.
Electrochemical reduction of naturally abundant nitrogen (N) under ambient conditions is a promising method for ammonia (NH) synthesis, while the development of a highly active, stable and low-cost catalyst remains a challenge. Herein, the N reduction reaction of TM@g-BCN in electrochemical nitrogen reduction has been systematically investigated using density functional theory (DFT) calculations and compared with that of TM@g-CN. It was found that TM atoms are more stably anchored to g-BCN than to g-CN.
View Article and Find Full Text PDFChem Soc Rev
December 2024
Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
Organic semiconductor single crystals (OSSCs), which possess the inherent merits of long-range order, low defect density, high mobility, structural tunability and good flexibility, have garnered significant attention in the organic optoelectronic community. Past decades have witnessed the explosive growth of OSSCs. Despite numerous conceptual demonstrations, OSSCs remain in the early stages of implementation for applications that require high integration and multifunctionality.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Purdue University, Davidson School of Chemical Engineering, 480 Stadium Mall, 47907, West Lafayette, UNITED STATES OF AMERICA.
C-H bond activation is the first step in manufacturing chemical products from readily available light alkane feedstock and typically proceeds via carbon-intensive thermal processes. The ongoing emphasis on decarbonization via electrification motivates low-temperature electrochemical alternatives that could lead to sustainable chemicals production. Platinum (Pt) electrocatalysts have shown activity towards reacting alkanes; however, little is known about propane electrocatalytic activation and conditions suitable for enabling selective oxidation to valuable products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!