Inflammatory response to magnesium-based biodegradable implant materials.

Acta Biomater

Department of Biological Characterisation, Division of Metallic Biomaterials, Institute of Material Research, Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal research, Max-Planck-Strasse 1, 21502 Geesthacht, Germany. Electronic address:

Published: January 2020

Biodegradability and mechanical properties of magnesium alloys are attractive for orthopaedic and cardiovascular applications. In order to study their cytotoxicity usually bone cells are used. However, after implantation, diverse and versatile cells are recruited and interact. Among the first ones coming into play are cells of the immune system, which are responsible for the inflammatory reaction. Macrophages play a central role in the inflammatory process due to the production of cytokines involved in the tissue healing but also in the possible failure of the implants. In order to evaluate the in vitro influence of the degradation products of magnesium-based alloys on cytokine release, the extracts of pure magnesium and two magnesium alloys (with gadolinium and silver as alloying elements) were examined in an inflammatory in vitro model. Human promonocytic cells (U937 cells) were differentiated into macrophages and further cultured with magnesium-based extracts for 1 and 3 days (simulating early and late inflammatory reaction phases), either at 37 °C or at 39 °C (mimicking normal and inflammatory conditions, respectively). All extracts exhibit very good cytocompatibility on differentiated macrophages. Results suggest that M1 and even more M2 profiles of macrophage were stimulated by the extracts of Mg. Furthermore, Mg-10Gd and Mg-2Ag extracts introduced a nuancing effect by rather inhibiting macrophage M1 profile. Magnesium-based biomaterials could thus induce a faster inflammation resolution while improving tissue repair. STATEMENT OF SIGNIFICANCE: Macrophage are the key-cells during inflammation and can influence the fate of tissue healing and implant performance. Magnesium-based implants are biodegradable and bioactive. Here we selected an in vitro system to model early and late inflammation and effect of pyrexia (37 °C versus 39 °C). We showed the beneficial and nuancing effects of magnesium (Mg) and the selected alloying elements (silver (Ag) and gadolinium (Gd)) on the macrophage polarisation. Mg extracts exacerbated simultaneously the macrophage M1 and M2 profiles while Mg-2Ag and Mg-10Gd rather inhibited the M1 differentiation. Furthermore, 39 °C exhibited protective effect by either decreasing cytokine production or promoting anti-inflammatory ones, with or without extracts. Mg-based biomaterials could thus induce a faster inflammation resolution while improving tissue repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2019.10.014DOI Listing

Publication Analysis

Top Keywords

magnesium alloys
8
inflammatory reaction
8
tissue healing
8
alloying elements
8
differentiated macrophages
8
early late
8
biomaterials induce
8
induce faster
8
faster inflammation
8
inflammation resolution
8

Similar Publications

In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.

View Article and Find Full Text PDF

Microstructure and Mechanical Properties of Mg-8Li-3Al-0.3Si Alloy Deformed Through a Combination of Back-Extrusion and Spinning Process.

Materials (Basel)

January 2025

Shanxi Key Laboratory of Magnesium-Based Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.

In this work, the Mg-8Li-3Al-0.3Si (LAS830) alloy was prepared by the vacuum melting method. The as-cast alloy was subjected to backward extrusion at 250 °C and then spun at 250 °C.

View Article and Find Full Text PDF

Laser shock peening (LSP) is an effective method for enhancing the fatigue life and mechanical properties of Ti alloys. However, there is limited research on the effects of LSP on crystal structure and dislocation characteristics. In this study, Ti-6Al-4V alloy was subjected to laser shock peening with varying laser power levels.

View Article and Find Full Text PDF

Study on Synergistically Improving Corrosion Resistance of Microarc Oxidation Coating on Magnesium Alloy by Loading of Sodium Tungstate and Silane Treatment.

Materials (Basel)

January 2025

Qinghai Provincial Key Laboratory of Nanomaterials and Technology, School of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China.

Sodium tungstate (NaWO) was filled into the micropores and onto the surface of a magnesium alloy microarc oxidation (MAO) coating by means of vacuum impregnation. Subsequently, the coating was sealed through silane treatment to synergistically boost its corrosion resistance. The phase composition of the coating was inspected using XRD.

View Article and Find Full Text PDF

Microstructure and Mechanical Properties of High-Pressure Die-Casting Mg-Al-RE Alloys with Minor Ca Addition.

Materials (Basel)

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 5988# Renmin Street, Changchun 130025, China.

With the increasing demand for magnesium (Mg) alloys with high strength and good ductility, this study explores high-pressure die-cast (HPDC) Mg-6Al-2RE (AE62), Mg-8Al-2RE (AE82) and Mg-8Al-2RE-0.2Ca (AEX820) alloys (wt. %).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!