Monitoring translation in synaptic fractions using a ribosome profiling strategy.

J Neurosci Methods

Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK; Patrick Wild Centre, EH8 9XD, Edinburgh, Scotland, UK; Simons Initiative for the Developing Brain, EH8 9XD, Edinburgh, Scotland, UK. Electronic address:

Published: January 2020

Background: The aim of this study was to develop a method to study genome-wide local translation in biochemically isolated synaptic fractions (synaptoneurosomes). This methodology is of particular interest for neurons, due to the cardinal role of local translational control in neuronal sub-compartments, such as dendrites, for plasticity, learning, memory, and for disorders of the nervous system.

New Method: We combined established methods for purifying synaptoneurosomes with translational profiling (ribosome profiling), a method that employs unbiased next generation sequencing to simultaneously assess transcription and translation in a single sample.

Results: The two existing methods are compatible to use in combination and yield high quality sequencing data, which are specific to synaptic compartments. This new protocol provides an easy to implement workflow, which combines biochemical isolation of synaptoneurosomes of varying levels of purity (crude or Percoll gradient purified) with the use of a commercial kit to generate sequencing libraries.

Comparison With Existing Methods: Compared to previous studies of the synaptic translatome, our method shows less contamination with non-neuronal cell types or non-synaptic compartments, increasing the specificity of the data obtained.

Conclusions: Combining the isolation of functional synaptic units with ribosome profiling offers a powerful tool to study local translation in synaptic compartments both in health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899497PMC
http://dx.doi.org/10.1016/j.jneumeth.2019.108456DOI Listing

Publication Analysis

Top Keywords

ribosome profiling
12
translation synaptic
8
synaptic fractions
8
local translation
8
existing methods
8
synaptic compartments
8
synaptic
6
monitoring translation
4
fractions ribosome
4
profiling
4

Similar Publications

The coronavirus HCoV-OC43 circulates continuously in the human population and is a frequent cause of the common cold. Here, we generated a high-resolution atlas of the transcriptional and translational landscape of OC43 during a time course following infection of human lung fibroblasts. Using ribosome profiling, we quantified the relative expression of the canonical open reading frames (ORFs) and identified previously unannotated ORFs.

View Article and Find Full Text PDF

Unlabelled: Metabolic syndrome and excessive alcohol consumption result in liver injury and fibrosis, which is characterized by increased collagen production by activated Hepatic Stellate Cells (HSCs). LARP6, an RNA-binding protein, was shown to facilitate collagen production. However, LARP6 expression and functionality as a regulator of fibrosis development in a disease relevant model remains elusive.

View Article and Find Full Text PDF

Ribosome pausing in amylase producing Bacillus subtilis during long fermentation.

Microb Cell Fact

January 2025

Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands.

Background: Ribosome pausing slows down translation and can affect protein synthesis. Improving translation efficiency can therefore be of commercial value. In this study, we investigated whether ribosome pausing occurs during production of the α-amylase AmyM by the industrial production organism Bacillus subtilis under repeated batch fermentation conditions.

View Article and Find Full Text PDF

Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation.

Int J Mol Sci

January 2025

Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.

The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues.

View Article and Find Full Text PDF

Background: The morbidity and mortality of sepsis remain high, and so far specific diagnostic and therapeutic means are lacking.

Objective: To screen novel biomarkers for sepsis.

Methods: Raw sepsis data were downloaded from the Chinese National Genebank (CNGBdb) and screened for differentially expressed RNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!