Aims: An important obstacle on the way of cell-based therapy is the risk of tumorigenicity in the patients benefit from these transplanted cells due to undifferentiated cells which participate in transplantation. Curcumin, the main compound of spice turmeric -as one of the natural products-was demonstrated to possess effective anti-cancer properties, with no significant effect on normal cells in dose and/or time-dependent manner. Furthermore many studies have been accomplished using curcumin for diabetes treatment. Therefore in this study we examined the efficacy of IPCs treated with curcumin in vivo.
Main Methods: Differentiation efficiency investigated by flowcytometry. RNA extraction and real-time PCR performed for important genes in IPC differentiation and tumorigenesis including Insulin, Nestin, Ngn3, Pdx1, P21, and P53. Finally we investigated the efficiency of these differentiated and treated cells in diabetic rats.
Key Findings: Our data indicates that nanocurcumin -in a specific dose-reduces the expression of Nestin with no significant effect on insulin expression in mRNA and protein level. Besides blood glucose level of diabetic rats which treated with DNC + cells, decreased from average 350 (mg/dI) to 100 (mg/dI). Checking out the pancreases of these rats, demonstrated that their endocrine segment was rebuilt. Moreover hematoxylin & eosin staining and IF results revealed that the Langerhans Islands were reformed.
Significance: IPCs' which treated with DNC were able to efficiently control the blood glucose level in diabetic rats which these cells were transplanted to them. Hence Curcumin has the potential to be employed in this kind of cell therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2019.116908 | DOI Listing |
Amino Acids
January 2025
Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.
View Article and Find Full Text PDFViruses
December 2024
Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.
This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.
Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.
Pharmaceutics
January 2025
Université de Lorraine, F-54000 Nancy, France.
Curcumin, a bioactive compound derived from the rhizome of L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
This study aims to evaluate the efficacy of curcumin (CUR), a natural polyphenol with potent antimicrobial and anti-inflammatory properties, when formulated as solid lipid nanoparticles (CUR-loaded SLN) against . Solid lipid nanoparticles (SLNs) were prepared as a carrier for CUR, which significantly improved its solubility. SLNs made with cetyl palmitate and Tween 80 were obtained via the hot ultrasonication method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!