Sirt3 enzyme and mitochondrial abnormality can be related to excess fatigue or muscular dysfunction in multiple sclerosis (MS).Ellagic acid (EA) has a mitochondrial protector, iron chelator, antioxidant, and axon regenerator in neurons.In this study the effect of EAon muscle dysfunction, its mitochondria, and Sirt3 enzyme incuprizone-induced model of MSwas examined. Demyelination was induced by a diet containing 0.2% w/w cuprizone (Cup) for 42 days and EA administered daily (5, 50, and 100 mg/kg P.O) either with or without cuprizone in mice. Behavioral tests were assessed, and muscle tissue markers ofoxidative stress, mitochondrial parameters, mitochondrial respiratory chain activity, the Sirt3 protein level, and Sirt3 expression were also determined. Luxol fast blue staining and the behavioral tests were performed toassess the implemented model. In Cup group an increased oxidative stress in their muscle tissues was observed. Also, muscle mitochondria exhibited mitochondria dysfunction, lowered mitochondrial respiratory chain activity, Sirt3 protein level, and Sirt3 expression.EA prevented most of these anomalous alterations. Sub-chronicEA co-treatment dose-dependently ameliorated behavioral and muscular impairment in mice that received Cup.EA can effectively protect muscle tissue against cuprizone-induced demeylination via the mitochondrial protection, oxidative stress prevention and Sirt3 overexpression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2019.116954 | DOI Listing |
J Neuroeng Rehabil
January 2025
Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.
Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.
Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.
View Article and Find Full Text PDFCell Death Discov
January 2025
Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
The neuromuscular junction (NMJ) is essential for transmitting signals from motor neurons (MNs) to skeletal muscles (SKMs), and its dysfunction can lead to severe motor disorders. However, our understanding of the NMJ is limited by the absence of accurate human models. Although human induced pluripotent stem cell (iPSC)-derived models have advanced NMJ research, their application is constrained by challenges such as limited differentiation efficiency, lengthy generation times, and cryopreservation difficulties.
View Article and Find Full Text PDFBMJ Open
January 2025
College of Medicine and Dentistry, James Cook University, Queensland Research Centre for Peripheral Vascular Disease, Townsville, Queensland, Australia.
Introduction: Patients with peripheral artery disease (PAD) can experience intermittent claudication, which limits walking capacity and the ability to undertake daily activities. While exercise therapy is an established way to improve walking capacity in people with PAD, it is not feasible in all patients. Neuromuscular electrical stimulation (NMES) provides a way to passively induce repeated muscle contractions and has been widely used as a therapy for chronic conditions that limit functional capacity.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:
Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!