All-solid-state batteries have attracted attention owing to the potential high energy density and safety; however, little success has been made on practical applications of solid-state batteries, which is largely attributed to the solid-solid interface issues. A fundamental elucidation of electrode-electrolyte interface behaviors is of crucial significance but has proven difficult. The interfacial resistance and capacity fading issues in a solid-state battery were probed, revealing a heterogeneous phase transition evolution at solid-solid interfaces. The strain-induced interfacial change and the contact loss, as well as a dense metallic surface phase, deteriorate the electrochemical reaction in solid-state batteries. Furthermore, the in situ growth of electrolytes on secondary particles is proposed to fabricate robust solid-solid interface. Our study enlightens new insights into the mechanism behind solid-solid interfacial reaction for optimizing advanced solid-state batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201910993DOI Listing

Publication Analysis

Top Keywords

solid-state batteries
16
solid-solid interface
8
solid-state
5
batteries
5
anisotropically electrochemical-mechanical
4
electrochemical-mechanical evolution
4
evolution solid-state
4
interfacial
4
batteries interfacial
4
interfacial tailored
4

Similar Publications

Beyond Inducing Anionic Redox: Controllable Migration Sequence of Li Ions in Transition Metal Layers Toward Highly Stable Li-Rich Cathodes.

Adv Mater

January 2025

Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.

The energy density of layered oxides of Li-ion batteries can be enhanced by inducing oxygen redox through replacing transition metal (TM) ions with Li ions in the TM layer. Undesirably, the cathodes always suffer from unfavorable structural degradation, which is closely associated with irreversible TM migration and slab gliding, resulting in continuous capacity and voltage decay. Herein, attention is paid to the Li ions in the TM layer (Li) and find their extra effects beyond inducing oxygen redox, which has been rarely mentioned.

View Article and Find Full Text PDF

Design strategies and performance enhancements of PVDF-based flexible electrolytes for high-performance all-solid-state lithium metal batteries.

Nanoscale

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

Lithium metal is considered one of the most promising anode materials for lithium batteries due to its high theoretical specific capacity (3860 mA h g) and low redox potential (-3.04 V). However, uncontrolled lithium dendrite growth and severe interfacial side reactions during cycling result in poor performance and safety risks, significantly limiting its practical applications.

View Article and Find Full Text PDF

All-solid-state (ASS) batteries are a promising solution to achieve carbon neutrality. ASS lithium-sulfur (Li-S) batteries stand out due to their improved safety, achieved by replacing organic solvents, which are prone to leakage and fire, with solid electrolytes. In addition, these batteries offer the benefits of higher capacity and the absence of rare metals.

View Article and Find Full Text PDF
Article Synopsis
  • All-solid-state lithium-ion batteries (ASSLBs) are poised to enhance the performance and safety of next-generation electronics, especially electric vehicles, by utilizing solid electrolytes with high ionic conductivity.
  • Researchers have substituted the B-site of LiLaTiO (LLTO) with Ga to create Ga-doped LLTO solid electrolytes, leading to structural improvements, enhanced ionic conductivity, and better electrochemical stability through a solid-state reaction method.
  • The results show that Ga-doped LLTO exhibits a significantly increased ionic conductivity of 4.15 × 10 S cm in LiLaTiGaO (with 3% Ga), making it a promising candidate for future ASSLB applications due to its stable operating voltage range.
View Article and Find Full Text PDF

Among direct recycling methods for spent lithium-ion batteries, solid-state regeneration is the route with minimal bottlenecks for industrial application and is highly compatible with the current industrial cathode materials production processes. However, surface structure degradation and interfacial impurities of spent cathodes significantly hinder Li replenishment during restoration. Herein, we propose a unique advanced oxidation strategy that leverages the inherent catalytic activity of spent layered cathode materials to address these challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!