The caudate nucleus (CN) and the putamen (PUT) as parts of the human striatum are distinguished by a marked heterogeneity in functional, anatomical, and neurochemical patterns. Our study aimed to document in detail the regional diversity in the distribution of dopamine (DA), serotonin, γ-aminobuturic acid, and choline acetyltransferase within the CN and PUT. For this purpose we dissected the CN as well as the PUT of 12 post-mortem brains of human subjects with no evidence of neurological and psychiatric disorders (38-81 years old) into about 80 tissue parts. We then investigated rostro-caudal, dorso-ventral, and medio-lateral gradients of these neurotransmitter markers. All parameters revealed higher levels, turnover rates, or activities in the PUT than in the CN. Within the PUT, DA levels increased continuously from rostral to caudal. In contrast, the lowest molar ratio of homovanillic acid to DA, a marker of DA turnover, coincided with highest DA levels in the caudal PUT, the part of the striatum with the highest loss of DA in Parkinson's disease (N. Engl. J. Med., 318, 1988, 876). Highest DA concentrations were found in the most central areas both in the PUT and CN. We observed an age-dependent loss of DA in the PUT and CN that did not correspond to the loss described for Parkinson's disease indicating different mechanisms inducing the deficit of DA. Our data demonstrate a marked heterogeneity in the anatomical distribution of neurotransmitter markers in the human dorsal striatum indicating anatomical and functional diversity within this brain structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078952PMC
http://dx.doi.org/10.1111/jnc.14897DOI Listing

Publication Analysis

Top Keywords

neurotransmitter markers
12
gradients neurotransmitter
8
caudate nucleus
8
nucleus putamen
8
marked heterogeneity
8
parkinson's disease
8
distinct gradients
4
markers caudate
4
human
4
putamen human
4

Similar Publications

Dense-core vesicles (DCVs) are found in various types of cells, such as neurons, pancreatic β-cells, and chromaffin cells. These vesicles release transmitters, peptides, and hormones to regulate diverse functions, such as the stress response, immune response, behavior, and blood glucose levels. In traditional electron microscopy after chemical fixation, it is often reported that the dense cores occupy a portion of the vesicle towards the center and are surrounded by a clear halo.

View Article and Find Full Text PDF

The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences.

View Article and Find Full Text PDF

Pathophysiological Significance of α-Synuclein in Sympathetic Nerves: In Vivo Observations.

Neurology

February 2025

From the Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.

Background And Objectives: Lewy body diseases (LBDs) such as Parkinson disease (PD) feature increased deposition of α-synuclein (α-syn) in cutaneous sympathetic noradrenergic nerves. The pathophysiologic significance of sympathetic intraneuronal α-syn is unclear. We reviewed data about immunoreactive α-syn, tyrosine hydroxylase (TH, a marker of catecholaminergic fibers), and the sympathetic neurotransmitter norepinephrine (NE) in skin biopsies from control participants and patients with PD, the related LBD pure autonomic failure (PAF), the non-LBD synucleinopathy multiple system atrophy (MSA), or neurologic postacute sequelae of severe acute respiratory syndrome coronavirus 2 (neuro-PASC).

View Article and Find Full Text PDF

This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC). Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination.

View Article and Find Full Text PDF

Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!