A poly(7-oxanorbornene-2-carboxylate) polymer containing pendent triethyleneglycol (TEG) chains of 2.8 MDa ("2.8M TEG") was synthesized and evaluated for long-term lubrication and wear reduction of ex vivo bovine cartilage as well as for synovitis in rats and dogs after intra-articular administration. Bovine cartilage surfaces were tested under torsional friction for 10,080 rotations while immersed in either saline, bovine synovial fluid (BSF), or 2.8M TEG. For each solution, coefficient of friction (μ), changes in surface roughness, and lost cartilage glycosaminoglycan were compared. To directly compare 2.8M TEG and BSF, additional samples were tested sequentially in BSF, BSF, 2.8M TEG, and then BSF. Finally, another set of samples were tested twice in saline to induce surface roughness and then tested in BSF, Synvisc, or 2.8M TEG to determine each treatment's effect on worn cartilage. Next, male Lewis rats were injected in one knee with 2.8M TEG or saline and evaluated for effects on gait, and female beagles were injected with either 2.8M TEG or saline in one knee, and their synovial tissues analyzed for inflammation by H&E staining. Treatment with 2.8M TEG lowers μ, lessens surface roughness, and minimizes glycosaminoglycan loss compared to saline. The 2.8M TEG also reduces μ compared to BSF in pairwise testing and on worn cartilage surfaces. Injection of 2.8M TEG in rat or beagle knees gives comparable effects to treatment with saline, and does not cause significant synovitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788642 | PMC |
http://dx.doi.org/10.1021/acsbiomaterials.9b00085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!