Assistive devices (ADs) are products intended to overcome the difficulties produced by the reduction in mobility and grip strength entailed by ageing and different pathologies. Nevertheless, there is little information about the effect that the use of these devices produces on hand kinematics. Thus, the aim of this work is to quantify this effect through the comparison of kinematic parameters (mean posture, ROM, median velocity and peak velocity) while performing activities of daily living (ADL) using normal products and ADs. Twelve healthy right-handed subjects performed 11 ADL with normal products and with 17 ADs wearing an instrumented glove on their right hand, 16 joint angles being recorded. ADs significantly affected hand kinematics, although the joints affected differed according to the AD. Furthermore, some pattern effects were identified depending on the characteristics of the handle of the ADs, namely, handle thickening, addition of a handle to products that initially did not have one, extension of existing handles or addition of handles to apply higher torques. An overview of the effects of these design characteristics on hand kinematics is presented as a basis for the selection of the most suitable AD depending on the patient's impairments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6788441PMC
http://dx.doi.org/10.7717/peerj.7806DOI Listing

Publication Analysis

Top Keywords

hand kinematics
16
assistive devices
8
activities daily
8
daily living
8
adl normal
8
normal products
8
products ads
8
hand
5
ads
5
kinematics assistive
4

Similar Publications

A characteristic feature of redundancy in the motor system is the ability to compensate for the failure of individual motor elements without affecting task performance. In this study, we examined the pattern and variability in error compensation between motor elements during a virtual task. Participants performed a redundant cursor control task with finger movements.

View Article and Find Full Text PDF

Myoelectric control has emerged as a promising approach for a wide range of applications, including controlling limb prosthetics, teleoperating robots and enabling immersive interactions in the Metaverse. However, the accuracy and robustness of myoelectric control systems are often affected by various factors, including muscle fatigue, perspiration, drifts in electrode positions and changes in arm position. The latter has received less attention despite its significant impact on signal quality and decoding accuracy.

View Article and Find Full Text PDF

Background: Upper limb fractures significantly alter movement, impacting function and recovery. Three-dimensional motion analysis allows precise assessment of these changes.

Methods: Sixty patients were divided into four groups: shoulder, elbow, wrist fractures, and controls.

View Article and Find Full Text PDF

A compliant metastructure design with reconfigurability up to six degrees of freedom.

Nat Commun

January 2025

Morphing Matter Lab, Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA.

Compliant mechanisms with reconfigurable degrees of freedom are gaining attention in the development of kinesthetic haptic devices, robotic systems, and mechanical metamaterials. However, available devices exhibit limited programmability and form-customizability, restricting their versatility. To address this gap, we propose a metastructure concept featuring reconfigurable motional freedom and tunable stiffness, adaptable to various form factors and applications.

View Article and Find Full Text PDF

Despite the advances in bionic reconstruction of missing limbs, the control of robotic limbs is still limited and, in most cases, not felt to be as natural by users. In this study, we introduce a control approach that combines robotic design based on postural synergies and neural decoding of synergistic behavior of spinal motoneurons. We developed a soft prosthetic hand with two degrees of actuation that realizes postures in a two-dimensional linear manifold generated by two postural synergies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!