Motor Adaptation in Parkinson's Disease During Prolonged Walking in Response to Corrective Acoustic Messages.

Front Aging Neurosci

Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy.

Published: September 2019

AI Article Synopsis

  • Wearable sensing technology offers innovative corrective feedback techniques for gait rehabilitation in individuals with Parkinson's disease (PD), potentially enhancing engagement of remaining neural functions.
  • In a study with 28 participants with PD and 13 healthy elderly controls, responses to two types of feedback (intelligent cueing and intelligent feedback) during walking revealed that increasing cadence was generally more challenging than decreasing it, especially for those with PD.
  • While some significant differences in motor adaptation were observed, particularly with intelligent cueing, results suggest the need for further investigation with larger participant groups to explore the complexities of gait retraining in PD.

Article Abstract

Wearable sensing technology is a new way to deliver corrective feedback. It is highly applicable to gait rehabilitation for persons with Parkinson's disease (PD) because feedback potentially engages spared neural function. Our study characterizes participants' motor adaptation to feedback signaling a deviation from their normal cadence during prolonged walking, providing insight into possible novel therapeutic devices for gait re-training. Twenty-eight persons with PD (15 with freezing, 13 without) and 13 age-matched healthy elderly (HE) walked for two 30-minute sessions. When their cadence varied, they heard either intelligent cueing (IntCue: bouts of ten beats indicating normal cadence) or intelligent feedback (IntFB: verbal instruction to increase or decrease cadence). We created a model that compares the effectiveness of the two conditions by quantifying the number of steps needed to return to the target cadence for every deviation. The model fits the short-term motor responses to the external step inputs (collected with wearable sensors). We found some significant difference in motor adaptation among groups and subgroups for the IntCue condition only. Both conditions were instead able to identify different types of responders among persons with PD, although showing opposite trends in their speed of adaptation. Increasing rather than decreasing the pace appeared to be more difficult for both groups. In fact, under IntFB the PD group required about seven steps to increase their cadence, whereas they only needed about three steps to decrease their cadence. However, it is important to note that this difference was not significant; perhaps future work could include more participants and/or more sessions, increasing the total number of deviations for analysis. Notably, a significant negative correlation, = -0.57 (-value = 0.008), was found between speed of adaptation and number of deviations during IntCue, but not during IntFB, suggesting that, for people who struggle with gait, such as those with PD, verbal instructions rather than metronome beats might be more effective at restoring normal cadence. Clinicians and biofeedback developers designing novel therapeutic devices could apply our findings to determine the optimal timing for corrective feedback, optimizing gait rehabilitation while minimizing the risk of cue-dependency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769108PMC
http://dx.doi.org/10.3389/fnagi.2019.00265DOI Listing

Publication Analysis

Top Keywords

motor adaptation
12
normal cadence
12
parkinson's disease
8
prolonged walking
8
corrective feedback
8
gait rehabilitation
8
cadence
8
novel therapeutic
8
therapeutic devices
8
decrease cadence
8

Similar Publications

Spinal cord injury (SCI) poses a complex set of physiological, psychological, and cognitive challenges that significantly affect an individual's quality of life. Analysis of longitudinal studies reveals that cognitive changes following SCI are often underestimated yet significantly impact patient's ability to adapt to their new circumstances. However, the role of neuropsychology in SCI management and rehabilitation is yet to be elucidated.

View Article and Find Full Text PDF

Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.

View Article and Find Full Text PDF

An athlete's performance and musculoskeletal health hinges on their ability to adapt their movements to varying environmental constraints. However, research has yet to offer a thorough understanding of whether coordination variability is altered in response to different synthetic and natural turf surfaces. The purpose of this study was to investigate lower extremity coordination variability during hopping and running on four turf surfaces-three synthetic and one natural.

View Article and Find Full Text PDF

Neurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunc-tional mitochondria trigger problems in various neuronal tasks. Using the neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth.

View Article and Find Full Text PDF

Molecular basis for the assembly of the dynein transport machinery on microtubules.

bioRxiv

December 2024

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.

Cytoplasmic dynein-1, a microtubule-based motor protein, requires dynactin and an adaptor to form the processive dynein-dynactin-adaptor (DDA) complex. The role of microtubules in DDA assembly has been elusive. Here, we reveal detailed structural insights into microtubule-mediated DDA assembly using cryo-electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!